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Abstract

Scenario mining from large-scale autonomous driving001
datasets, such as Argoverse 2, is crucial for the develop-002
ment and validation of autonomous driving systems. The003
RefAV framework represents a promising approach by em-004
ploying Large Language Models (LLMs) to translate natural-005
language queries into executable code for identifying rele-006
vant scenarios. However, the performance of this method007
is constrained by its reliance on the quality of upstream 3D008
multi-object tracking data, the absence of a direct linkage009
between natural-language descriptions and RGB images,010
runtime errors stemming from LLM-generated code, and011
inaccuracies in interpreting parameters for functions that012
describe complex multi-object spatial relationships. To ad-013
dress these issues, we introduce a method that utilizes a014
CLIP encoder for multimodal semantic similarity filtering,015
first performing a coarse-grained selection by comparing016
raw images against the natural-language description, fol-017
lowed by fine-grained mining using an LLM-generated script018
composed of atomic functions. Additionally, a fault-tolerant019
iterative code generation mechanism is introduced, which020
refines code by reprompting the LLM with error feedback,021
along with specialized prompt engineering to enhance the022
LLM’s comprehension and correct application of spatial-023
relationship functions. Experiments on Argoverse 2 with024
various LLMs show that our method achieves consistent025
improvements across multiple metrics. These results under-026
score the efficacy of the proposed techniques for reliable,027
high-precision scenario mining.028

1. Introduction029

The deployment of Autonomous Vehicles (AVs) necessitates030
rigorous testing and validation, for which the identification031
of interesting, rare, or safety-critical scenarios from vast op-032
erational data is paramount. This process is vital not only033
for evaluating ego-behavior and safety testing but also for034
enabling active learning at scale [12]. Traditional methods035
relying on manual inspection or predefined heuristics are of-036
ten prohibitively time-consuming and prone to errors when037

Traditional method Our method

Full tracks Ground truth

Scenario Mining Semantics-assisted mining

Figure 1. In contrast to traditional scenario-mining pipelines that
interrogate the entire collection of 3D tracks—risking substantial
drift from the intended query when trajectories share confounding
similarities in colour, object class, or event labels—our multimodal,
semantics-assisted method first subjects the raw RGB imagery to a
semantic filter, isolates a candidate subset of 3D tracks, and only
then executes the natural-language query within this reduced search
space, which markedly enhances retrieval precision and curtails
computational overhead.

faced with the terabytes of multimodal data collected by AV 038
fleets [29]. Previous methods that used database queries 039
for scenario mining lacked flexibility compared to methods 040
based on LLMs [10, 13, 16]. The sheer volume and com- 041
plexity of this data pose a major challenge, making efficient 042
and accurate scenario mining a major ongoing challenge. 043
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The RefAV [6, 30] framework is a method for retriev-044
ing specific scenarios from sensor data via natural language045
queries, leveraging the powerful zero-shot capabilities of046
Large Language Models. RefAV translates natural-language047
descriptions of scenarios into composable function calls,048
which are then executed to identify relevant events within049
driving logs. This approach offers flexibility and expressive-050
ness beyond structured query languages.051

Despite the promise of LLM-based scenario mining, prac-052
tical implementations like RefAV encounter specific limi-053
tations. First, the method hand-crafts 28 atomic functions054
that detect trajectory states, articulate relations between a055
focal object and its surrounding entities, and implement ba-056
sic Boolean logic; an LLM then composes these atoms into057
scripts that operate directly on the 3D tracks. As a result, min-058
ing accuracy is tied to the quality of the upstream data, since059
the preceding 3D object-detection and tracking modules060
determine the object labels—and therefore whether the tra-061
jectories themselves are computed correctly. Consequently,062
poor performance in the upstream 3D multi-object track-063
ing directly degrades the performance of scenario mining.064
Furthermore, this approach contravenes the conventional065
intuition of video retrieval by neglecting the association be-066
tween the raw image and the natural-language description.067
Secondly, code generated directly by LLMs can frequently068
contain syntactic or logical errors, leading to runtime fail-069
ures. These failures disrupt the mining pipeline and result070
in incomplete scenario discovery. LLMs may also struggle071
with the nuanced semantics of functions describing relative072
spatial relationships between multiple objects. For instance,073
functions such as has objects in relative direction() or facing074
toward() require precise parameter assignment to reflect the075
intended meaning (e.g., distinguishing "a car in front of a076
pedestrian" from "a pedestrian in front of a car"). Misinter-077
pretation of these parameters leads to semantic inaccuracies078
in the retrieved scenarios, even if the code executes with-079
out error. This issue is a manifestation of a known failure080
mode in LLMs, often termed ‘factual hallucination’ or a081
breakdown in understanding relational knowledge [17, 23].082
These represent fundamental hurdles in reliably converting083
complex human language into precise and correct machine-084
executable instructions.085

In light of the aforementioned limitations, we propose086
a robust, multimodally-aware scenario mining methodol-087
ogy that enhances the RefAV framework. Our approach088
introduces a dual-branch architecture comprising an image-089
semantic branch and a text-semantic branch. The image-090
semantic branch employs the YOLOv8 model for object091
detection on raw RGB frames. Subsequently, a pre-trained092
CLIP image encoder [22] is utilized to extract offline fea-093
ture embeddings for each detected object. Concurrently, the094
text-semantic branch processes the input natural-language095
query using the spaCy [14] NLP toolkit to perform keyword096

extraction. This process isolates critical terms, including 097
colors, nouns, and spatial prepositions, which are then en- 098
coded into offline feature embeddings using a CLIP text 099
encoder. During inference, a coarse-grained filtering stage 100
is executed by computing the cosine similarity between the 101
keyword features and the object features across all frames 102
within a complete log. Based on a Top-K selection, the 103
tracklets corresponding to frames with the highest similar- 104
ity scores are shortlisted. Simultaneously, leveraging the 105
Fault-Tolerant Iterative Code Generation mechanism and 106
spatially-aware prompting, the LLM generates an executable 107
script from the natural-language description. This script then 108
performs a fine-grained search directly on the shortlisted 109
tracklets—subsets of the overall 3D tracks—to precisely 110
identify the target scenario. 111

In summary, our main contributions are the following: 112
113

• We propose a multimodal semantics enhancement to the 114
RefAV methodology. This method addresses a critical 115
deficiency in the original pipeline by establishing a direct 116
association between RGB images and natural language 117
descriptions. 118
• We introduce the Fault-Tolerant Iterative Code Genera- 119

tion (FT-ICG) mechanism, specifically designed for the 120
paradigm of using Large Language Models to compose 121
atomic functions. This contribution significantly enhances 122
the robustness of the method. 123
• We propose the integration of enhanced prompting for 124

spatial relationship functions. This technique mitigates 125
the propensity of the LLM to misinterpret parameters for 126
atomic functions that describe complex spatial relation- 127
ships. 128

2. Related Works 129

2.1. Scenario mining 130

The safety and reliability of autonomous driving (AD) are 131
of paramount importance, necessitating rigorous testing and 132
validation protocols before deployment. While real-world 133
road testing is indispensable, it is prohibitively expensive, 134
time-consuming, and fails to provide sufficient coverage 135
of rare but critical "edge cases." Consequently, simulation- 136
based testing has emerged as an essential component of 137
the verification and validation pipeline. A core challenge 138
in this paradigm is the generation of a comprehensive and 139
challenging suite of test scenarios. This has given rise to the 140
field of Scenario Mining, which focuses on systematically 141
creating diverse, critical, and realistic driving scenarios to 142
test AD in simulation efficiently. [9, 29] The primary goal is 143
to pinpoint trajectory snippets, within the set of annotated 144
scenes, that satisfy the given natural-language description. 145

Early efforts in scenario mining leveraged explicit hu- 146
man knowledge. These methods encode traffic laws, domain 147
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Figure 2. Overview of the RefAV framework: RefAV harnesses
large language models to transmute natural-language descriptions
into executable, structured code and then runs these scripts au-
tomatically to mine the dataset. The trajectory labels consumed
by the queries originate from upstream 3D multi-object detection
and tracking modules, while handcrafted prompts and a library of
twenty-eight atomic functions—each expressing a particular object
state—steer the LLM to generate the final retrieval program.

expertise, and parameters from accident databases into for-148
mal languages and ontologies. By defining a logical sce-149
nario space with parameters (e.g., road curvature, number150
of vehicles, weather) and their valid ranges, scenarios can151
be generated through techniques like combinatorial testing152
to cover a wide array of predefined conditions. A signif-153
icant initiative in this area is the PEGASUS project [20],154
which established a systematic, knowledge-driven workflow155
for defining scenarios. Formal languages such as ASAM156
OpenSCENARIO [1] have become industry standards for157
describing the dynamic content of driving scenarios. The158
primary advantage of knowledge-based methods is the high159
degree of control and interpretability, making them ideal for160
testing system compliance with known rules. However, their161
main limitation is that they are bound by existing knowledge162
and manual effort, often failing to uncover novel modes and163
lacking the behavioral complexity of real-world traffic.164

With the advent of large-scale, real-world driving datasets,165
data-driven methods have become prominent. These ap-166
proaches mine vast logs of sensor data to extract realistic167
scenarios or learn generative models of traffic behavior. The168
typical pipeline involves data acquisition from datasets like169
the Waymo Open Motion Dataset [24], nuScenes [4] or Ar-170
goverse2 [30], using scenario identification by mining the171
data for events that exceed a certain criticality threshold. By172
articulating the task in a native database query language,173
a bespoke domain-specific language (DSL), or a general-174
purpose programming language, the problem is recast as175
one of label retrieval. Erwin de Gelder et al. [10] present a176

label-based scenario-mining system for autonomous driving 177
that operates on datasets pre-annotated either automatically 178
or by hand. Although the labels are applied in a semi-manual 179
fashion, they remain coarse-grained; as a result, the frame- 180
work is rigid and scales poorly—supporting richer, more 181
nuanced scenes would require an unwieldy proliferation 182
of tags. Motional’s scenario mining pipeline [19] adopts a 183
continual-learning paradigm: the system cyclically discovers 184
scenes, annotates them (both manually and automatically), 185
retrains its models with the expanded data, and then performs 186
automatic evaluation. Acting as the data-sourcing engine, 187
it maintains a tag vocabulary whose compositions encode 188
basic spatio-temporal relations between the ego vehicle and 189
surrounding traffic participants. Given 3D trajectories, the 190
ego path, and the HD map, it automatically labels both the 191
ego and other actors, stores the tags in a relational database, 192
and exploits SQL for efficient retrieval. The strength of data- 193
driven methods lies in their ability to produce highly realistic 194
scenarios grounded in real-world behavior. The coverage of 195
the source data is inherently limiting their primary drawback; 196
discovering truly novel edge cases remains a "needle-in-a- 197
haystack" problem, and the generated scenarios are often 198
descriptive rather than actively challenging. 199

To overcome the limitations of passive methods, the most 200
recent trend in scenario mining involves the application of 201
large foundation models [28]. As outlined in the comprehen- 202
sive survey by Gao et al. [8], this new paradigm leverages the 203
power of Large Language Models (LLMs), Vision-Language 204
Models (VLMs), and Diffusion Models to generate scenarios 205
from high-level, often semantic, inputs. For instance, a user 206
can provide a natural language prompt like, "Create a chal- 207
lenging scenario where a truck illegally overtakes a bicycle 208
on a rainy night," and the model generates the corresponding 209
scene parameters for the simulator. 210

Works such as ChatScene [34] have demonstrated the abil- 211
ity of LLMs to understand complex spatial and behavioral 212
relationships to produce diverse and contextually rich scenar- 213
ios. This approach holds immense promise for bridging the 214
gap between abstract human knowledge and concrete simu- 215
lation data. While still an emerging area, the key challenges 216
include ensuring the physical plausibility and controllability 217
of generated scenarios and managing the significant computa- 218
tional resources required by these large models. RefAV [6] is 219
a large-scale scenario-mining framework that houses 10,000 220
distinct natural-language queries describing the complex 221
multi-agent interactions present in the 1,000 driving logs 222
of the Argoverse 2 sensor suite. It exposes 28 handcrafted 223
atomic functions capable of recognizing trajectory states, ex- 224
pressing relational predicates between a target agent and its 225
surrounding entities, and supporting basic Boolean logic. At 226
its core, the framework feeds the natural-language query, the 227
atomic function inventory, and carefully engineered prompts 228
into an LLM, which synthesizes an executable script com- 229
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Figure 3. Framework of the multimodal semantics assisted scenario mining.

posed of these atoms; running the script over the dataset230
then retrieves the trajectories that satisfy the query, as shown231
in Figure 2. Our work builds on RefAV to deliver robust232
scenario mining assisted by multimodal semantics.233

In conclusion, the field of scenario mining is evolving234
from static, knowledge-driven methods towards more dy-235
namic and intelligent approaches. Current research increas-236
ingly focuses on hybrid methods, such as using data-driven237
models to create a realistic basis for subsequent scenario238
mining. Key future directions include richer multimodal239
annotations, more faithful modeling of complex multi-agent240
interactions, and greater explainability of the critical scenar-241
ios that are retrieved.242

2.2. Video retrieval243

Text–video retrieval is a task closely aligned with, and anal-244
ogous to, scenario mining: both seek to locate semantically245
coherent segments within large-scale, long-sequence data246
streams based on natural-language descriptions. Multimodal247
fusion–based approaches constitute the most prevalent and248
emblematic paradigm within the text–video retrieval litera-249
ture. We may glean valuable insights for scenario mining by250
studying advances in video retrieval. Since 2020, research251
on text–video retrieval has advanced through successive in-252
novations in cross-modal alignment and temporal modeling:253

in 2020, Gabeur et al. proposed a multi-modal Transformer 254
that jointly encodes visual modalities and explicitly models 255
temporal dependencies via cross-modal attention, optimiz- 256
ing language embeddings together with video features [7]; 257
in 2021, Wang et al. released T2VLAD, which introduces 258
shared semantic centers to perform computationally effi- 259
cient global-local alignment for fine-grained comparison 260
[27]; Gorti et al. presented X-Pool, enabling text to attend 261
selectively to semantically relevant frames and thereby fil- 262
tering visual noise for improved accuracy [11]; in 2023, Wu 263
et al. developed Cap4Video, leveraging zero-shot video- 264
generated captions for data augmentation, cross-modal in- 265
teraction, and an auxiliary inference branch, pushing perfor- 266
mance on multiple benchmarks [31]; in 2024, Wang et al. 267
introduced T-MASS, a stochastic text-embedding strategy 268
that treats queries as deformable semantic masses, employ- 269
ing a similarity-aware radius and support-text regularization 270
to boost expressiveness and set new records on five datasets 271
[26]; entering 2025, Zhang et al. proposed TokenBinder, a 272
two-stage framework adopting a one-to-many coarse-to-fine 273
alignment paradigm inspired by comparative judgment and 274
equipped with a Focused-view Fusion Network for cross- 275
attention, achieving state-of-the-art results across six bench- 276
marks [33], while Bian et al. introduced the SMA framework, 277
which performs selective multi-grained alignment at both 278
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video-sentence and object-phrase levels with token aggre-279
gation and similarity-aware keyframe selection, attaining280
strong performance on MSR-VTT, ActivityNet, and beyond281
[3].282

The motivation driving these video-retrieval tasks is akin283
to that of scenario mining: both seek to locate a contiguous284
scene that matches a natural-language description. Scenario285
mining, however, often requires finer-grained retrieval tar-286
geting the trajectory of a specific agent or a set of interact-287
ing agents. In almost all video-retrieval work, retrieval is288
achieved by directly aligning or contrasting visual and tex-289
tual semantics, which constitutes a latent opportunity for290
scenario mining: cross-modal semantic matching can be291
leveraged for coarse retrieval, after which detailed scenario292
mining can be confined to the trajectory subset thus obtained.293

3. Methods294

This section first details the multimodal semantics assisted295
scenario mining pipeline, and then presents the work’s two296
further robustness-oriented contributions: a Fault-Tolerant It-297
erative Code Generation (FT-ICG) mechanism and enhanced298
prompting for spatial-relation functions.299

3.1. CLIP-based Multimodal Semantic Filter300

Within the original RefAV pipeline, scenario mining is per-301
formed exclusively via scripts assembled from atomic func-302
tions, a design that overlooks the direct correspondence be-303
tween natural-language queries and raw image frames. In304
RefAV, the pipeline begins with 3D object detection to ex-305
tract each target’s class, heading, velocity, and related at-306
tributes, assigns corresponding labels, and then waits for307
an LLM-generated script to query them. The correctness308
of those attributes rests wholly on the upstream detector’s309
performance, and the elongated processing chain renders the310
connection between natural-language queries and raw sensor311
data highly indirect—raising the likelihood that crucial infor-312
mation will be missed or inaccurately captured. Inspired by313
advances in text–video retrieval, we enhance RefAV with a314
coarse-to-fine filtering stage: natural-language descriptions315
first delimit tracklets that are likely to contain the target316
situation, and LLM-generated code then probes only those317
candidates. This hierarchical procedure sharply reduces false318
positives and scene ambiguities, yielding results that hew319
more closely to ground truth.320

Specifically, on the visual side, we enumerate every object321
visible in the nine synchronized camera views and encode322
each one offline with a pretrained CLIP image encoder, so323
that every embedding captures a localized slice of the frame324
at its timestamp. On the language side we employ spaCy—an325
industrial-grade NLP library—to extract colour, entity, and326
spatial-relation words from each query; these discrete key-327
words succinctly convey the sentence semantics and, when328
embedded by the CLIP text encoder, have been shown by329

Xie et al [32]. to be more discriminative than full-sentence 330
encodings. We rank frames by cosine similarity to the key- 331
word embeddings, retain the top-k matches, and record their 332
timestamps to assemble candidate tracklets—subsets of the 333
full 3D trajectories. This design enables raw RGB imagery to 334
be compared directly against the textual description, thereby 335
discarding tracklets whose semantics deviate markedly from 336
the query; confining the LLM-generated scripts to mine only 337
within these semantically aligned candidates greatly dimin- 338
ishes the risk of false positives. Executing the original RefAV 339
scripts on this pruned search space markedly improves the 340
HOTA-T metric while reducing inference consumption. 341

3.2. Fault-Tolerant Iterative Code Generation 342

A significant challenge in the practical application of LLMs 343
for code generation is the propensity for the generated code 344
to contain errors. These errors can range from simple syntax 345
mistakes to more complex logical flaws or incorrect usage of 346
the provided atomic functions, all of which lead to runtime 347
exceptions. Such failures can terminate the scenario min- 348
ing process prematurely, resulting in missed scenarios and 349
reduced overall system reliability. The pseudocode for the

Algorithm 1: Fault-Tolerant Iterative Code Genera-
tion

Input: Natural-language query NLQuery ; set of
atomic functions A; maximum iterations K

Output: Executable Python code ValidCode

Prompt←
COMPOSE

(
NLQuery , DESCRIBE(A)

)
;

for i← 1 to K do
try
Code← LLMGENERATE(Prompt);
PYTHONEXEC(Code);
Break;
catch (RuntimeError ε)
ErrorMsg ← MESSAGE(ε);
IterationPrompt← "This is the
code generated last time:
{Code}, with the error
message: {ErrorMsg}. Please
avoid code runtime errors.";
Prompt←

COMPOSE
(
NLQuery , IterationPrompt

)
;

350
fault-tolerant iterative code generation mechanism is shown 351
in Algorithm 1. Algorithm 1 proceeds as follows: first, the 352
natural-language scenario query is concatenated with a de- 353
scription of the available atomic-function library to form 354
an initial prompt, giving the LLM full context about which 355
functions are permissible and how they behave so that its 356
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Figure 4. Framework of the Fault-Tolerant Iterative Code-Generation mechanism: whenever the executable script raises a runtime exception,
the error trace is fed back to the LLM, which regenerates a revised script; this loop repeats for a preset number of iterations, thereby
substantially reducing mining failures caused by execution errors.

first attempt is well informed. The model then generates a357
Python snippet that chains the atomic functions to imple-358
ment the query logic and retrieve the desired scenarios. This359
code is executed immediately in a sandboxed environment;360
if it runs without error, the resulting track set is accepted361
and the pipeline terminates successfully. If, however, exe-362
cution raises an exception—such as a ‘NameError‘ for an363
undefined variable, a ‘TypeError‘ due to incorrect argument364
counts, or any other syntactic or logical fault—the error is365
caught and its message recorded. The system then feeds both366
the faulty code and the accompanying error message back to367
the LLM in a new prompt that explicitly instructs the model368
to correct the identified problem. Armed with this feedback,369
the LLM produces a revised snippet, which is executed and370
validated again. This refinement loop continues, with the371
model iteratively “learning” from each failure, until the code372
executes cleanly or a maximum of K iterations is reached.373
In our implementation K = 5; if a runnable solution still has374
not been produced after five attempts, the query is flagged375
for manual review. This upper bound prevents pathologi-376
cal infinite-loop behavior while still allowing most errors377
to be resolved through a handful of feedback cycles. This378
iterative approach treats the LLM not as a single-shot code379
generator but as an entity capable of learning from explicit380
feedback on its errors. By providing the context of the pre-381
vious failure, the LLM is guided towards a correct solution.382
This significantly increases the success rate of code genera-383
tion, thereby enhancing the robustness and coverage of the384
scenario mining pipeline, allowing it to handle a broader385
spectrum of queries and code complexities without manual386
intervention. This process mirrors a human programmer’s387
debugging cycle, iteratively refining code based on observed388
errors.389

3.3. Enhanced Prompting for Spatial Relational 390
Functions 391

Beyond syntactic correctness, the semantic accuracy of the 392
generated code is paramount. LLMs often fail to correctly 393
interpret and parameterize functions that describe the relative 394
spatial relationships between multiple objects in a specific 395
domain. For example, a query like "a cyclist to the left of a 396
bus" requires the LLM to correctly assign the ‘cyclist’ and 397
‘bus’ tracks to the appropriate parameters of a function like 398
has objects in relative direction(). An incorrect assignment 399
could lead the system to search for "a bus to the left of a 400
cyclist," fundamentally misinterpreting the query. A more 401
comprehensive prompt-engineering strategy can effectively 402
suppress ambiguities and hallucinations in large models. [5] 403
To mitigate such semantic errors, Enhanced Prompting for 404
Spatial Relational Functions is introduced. This involves 405
augmenting the initial prompt provided to the LLM with 406
specific instructions that clarify the argument semantics for 407
these critical functions. Before the LLM attempts to generate 408
code involving functions that define relative positions or 409
orientations, it receives the following guiding information: 410

If you use has objects in relative direction(), being crossed 411
by(), heading in relative direction to() functions, direction 412
parameter specifies the orientation of related candidates rel- 413
ative to track candidates. The facing toward() and heading 414
toward() functions indicate that the track candidates param- 415
eter is oriented toward the related candidates parameter. 416

This explicit instruction serves as a form of contextual 417
disambiguation. It clearly defines the roles of track candi- 418
dates (often the primary subject of the relation) and related 419
candidates (the reference object) within the context of each 420
specified function. For directional functions like has objects 421
in relative direction, it clarifies which entity’s perspective 422
defines the direction. For orientational functions like facing 423
toward, it specifies which entity is performing the action of 424
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facing. By providing this upfront clarification, the LLM is425
better equipped to map the natural language description of426
spatial relationships to the correct functional representation427
and parameter assignment. This leads to a higher fidelity428
in translating complex spatial queries, ultimately improving429
the semantic accuracy and relevance of the mined scenarios.430
This addresses the challenge that code might run correctly431
but perform the wrong semantic operation if the LLM mis-432
understands these subtle but critical distinctions.433

4. Experiments434

4.1. Implementation Details435

The experiments were conducted using the Argoverse 2436
dataset. The dataset provides rich multi-modal information,437
including RGB camera frames, LiDAR point clouds, HD438
Maps, and 3D track annotations for 26 object categories.439

The primary metric is HOTA-Temporal. It is a spatial440
tracking metric that considers only the scenario-relevant441
objects during the precise timeframe when the scenario is442
occurring. HOTA[18] was introduced to provide a unified443
evaluation of multi-object tracking by jointly accounting for444
detection, association, and localization—three facets that to-445
gether reflect human intuition of tracking quality. Secondary446
metrics include HOTA, Timestamp F1, and Log F1. Times-447
tamp F1 treats the video as a sequence of frames, labeling448
each timestamp as “scenario” or “non-scenario.” Precision449
and recall are computed from the comparison of predicted450
and ground-truth frame labels. Log F1 simplifies the task451
to a single binary decision per log. After aggregating true452
positives, false positives, and false negatives across all logs,453
a conventional F1-score is produced.454

In our setup, we adopt the pretrained ViT-B/32 size of455
CLIP—both its image and text encoders—as the backbone456
of the multimodal semantic filter. We employ YOLOv8-l457
[15] as the object detector. The Qwen2.5-VL-7B model458
[2] was deployed locally on a workstation outfitted with an459
NVIDIA RTX 4090 GPU, whereas the Gemini model [25]460
was accessed remotely via API calls. For 3D object detection461
and tracking, we utilized the track obtained directly from462
the LT3D method [21]. We set K in Algorithm 1 to 5. For463
the generated code, if the number of iterations of the fault464
tolerance mechanism exceeds the K value, we manually edit465
the generated code, manually modify the reported errors, and466
fill in the correct track candidates, related candidates, and467
direction parameters. Method evaluation is conducted on the468
validation set.469

4.2. Comparative Experiments470

As Table 1-3 demonstrate, our method outperforms the base-471
line under both upstream 3D tracking pipelines—Le3DE2E472
and TransFusion. We report results with three distinct LLMs473
acting as code generators, and the largest performance gain474

3D Track Method HOTA-T HOTA TS-F1 Log-F1

Le3DE2E RefAV∗ 33.27 36.72 61.94 58.12
Our method 44.54 44.71 70.37 71.47

TransFusion RefAV∗ 30.06 31.27 59.96 59.31
Our method 44.11 44.67 69.44 68.66

Table 1. With Qwen2.5-VL-7B as the LLM, comparison
of our method and baseline across two distinct 3D tracking
pipelines—Le3DE2E and TransFusion. ∗ represents the baseline
reproduced in our implementation.

3D Track Method HOTA-T HOTA TS-F1 Log-F1

Le3DE2E RefAV∗ 40.17 40.33 66.70 62.71
Our method 48.30 49.52 72.30 73.41

TransFusion RefAV∗ 35.50 35.93 59.89 59.13
Our method 47.07 47.19 69.79 70.93

Table 2. With Gemini 2.5 Flash as the LLM, comparison
of our method and baseline across two distinct 3D tracking
pipelines—Le3DE2E and TransFusion.

3D Track Method HOTA-T HOTA TS-F1 Log-F1

Le3DE2E RefAV∗ 42.73 44.27 69.84 66.13
Our method 52.10 51.07 74.21 70.45

TransFusion RefAV∗ 38.76 39.22 60.36 60.31
Our method 47.37 47.79 69.73 71.66

Table 3. With Gemini 2.5 Pro as the LLM, comparison
of our method and baseline across two distinct 3D tracking
pipelines—Le3DE2E and TransFusion.

arises when Qwen2.5-VL-7B is used. This is likely because 475
Qwen2.5-VL-7B, relative to Gemini Flash and Gemini Pro, 476
exhibits a weaker innate understanding of spatial relations 477
and atomic functions; our pipeline compensates for this 478
shortcoming. The semantics-assisted filtering stage confines 479
Qwen’s search to a much smaller candidate subset, the FT- 480
ICG loop produces more robust and executable code, and 481
the spatially informed prompts help Qwen correctly interpret 482
and invoke the atomic functions. Collectively, these elements 483
drive the substantial improvement over the original RefAV 484
baseline when Qwen serves as the LLM. When Gemini Flash 485
and Gemini Pro are used as the LLM, our method likewise 486
outperforms the RefAV baseline—an advantage attributable 487
to its coarse-to-fine mining cascade, the greater robustness 488
of the generated code, and a deeper, more accurate handling 489
of the atomic-function semantics. 490

As reported in Table 4, we benchmark the end-to-end in- 491
ference time for generating and executing a single query un- 492
der RefAV and under our framework. Our pipeline delivers 493
a notable speed-up, attributable to its coarse-to-fine mining 494
strategy: CLIP features for all images and query tokens are 495
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pre-extracted offline, making their embeddings immediately496
available at inference time. The system therefore performs497
only a lightweight cosine-similarity check to complete the498
coarse retrieval stage, swiftly pruning trajectories that are se-499
mantically irrelevant; by sparing the subsequent fine-grained500
miner from comparing against obviously incorrect tracks,501
the overall runtime is substantially reduced.502

LLMs Method Time(s)

Qwen2.5-VL-7B RefAV∗ 47.3
Our method 19.4

Gemini Flash RefAV∗ 48.9
Our method 17.7

Gemini Pro RefAV∗ 42.7
Our method 18.7

Table 4. A comparison of the inference time required by RefAV
and our approach to generate and execute a single query.

MSA FT-ICG EP-SRF HOTA-T HOTA TS-F1 Log-F1

✓ 41.06 39.98 67.31 67.04
✓ 34.71 39.32 62.77 58.09

✓ 35.37 39.21 62.93 60.11
✓ ✓ 41.12 40.38 66.68 68.45
✓ ✓ 43.27 44.13 70.12 69.93
✓ ✓ ✓ 44.54 44.71 70.37 71.47

Table 5. With Qwen2.5-VL-7B as the LLM, performance compari-
son under different configurations.

4.3. Ablation study503

To demonstrate the broad performance gains delivered by our504
three contributions to scenario mining, we perform ablation505
studies under three distinct LLM configurations. In the table,506
the multimodal semantics–assisted filter is denoted MSA,507
Fault-Tolerant Iterative Code Generation appears as FT-ICG,508
and Enhanced Prompting for Spatial-Relational Functions is509
labeled EP-SRF; all results are reported using the Le3DE2E510
3D tracker.511

Across all three LLMs, the multimodal semantic filter512
(MSA) raises performance consistently—most conspicu-513
ously on the TS-F1 metric—demonstrating that the CLIP-514
based filter effectively selects image frames whose content515
aligns with the query keywords, thereby producing more ac-516
curate timestamps and tracklets. Restricting scenario mining517
to these subsets of the full 3D tracks improves multi-agent518
retrieval precision and minimizes false positives. The FT-519
ICG mechanism likewise yields uniform gains, particularly520
in HOTA-T, underscoring the practical benefit of resolv-521
ing runtime code errors: each iterative refinement produces522
scripts with higher correctness and executability, which in523

MSA FT-ICG EP-SRF HOTA-T HOTA TS-F1 Log-F1

✓ 44.34 45.98 70.97 66.45
✓ 44.13 45.07 70.44 60.66

✓ 41.77 40.93 69.73 60.95
✓ ✓ 44.20 46.37 72.01 67.17
✓ ✓ 45.97 46.63 71.60 69.31
✓ ✓ ✓ 48.30 49.52 72.30 73.41

Table 6. With Gemini Flash as the LLM, performance comparison
under different configurations.

MSA FT-ICG EP-SRF HOTA-T HOTA TS-F1 Log-F1

✓ 47.28 47.97 67.70 66.95
✓ 44.10 46.37 65.90 60.32

✓ 43.74 45.62 69.90 59.13
✓ ✓ 51.98 51.10 74.05 69.98
✓ ✓ 50.56 49.47 71.30 70.01
✓ ✓ ✓ 52.10 51.07 74.21 70.45

Table 7. With Gemini Pro as the LLM, performance comparison
under different configurations.

turn lifts the HOTA-T score. Subsequent incorporation of 524
EP-SRF provides additional enhancements—most notably in 525
HOTA-Temporal, Timestamp-F1, and Log-F1—highlighting 526
the critical role of semantically precise parameterization 527
of spatial-relation functions and revealing untapped LLM 528
potential that can be unlocked through better prompt en- 529
gineering. The consistency of these improvements across 530
different LLM backbones indicates that our approach tackles 531
fundamental challenges in LLM-driven code generation and 532
interpretation rather than exploiting model-specific quirks. 533

5. Conclusion 534

In this paper we presented a robust, multimodal scenario- 535
mining framework that augments the RefAV pipeline with 536
CLIP-based semantic filtering, a fault-tolerant iterative code- 537
generation loop, and relation-explicit prompt engineering; 538
through a coarse-to-fine retrieval strategy that first constrains 539
the search space via image–text similarity and then refines 540
results with LLM-composed atomic-function scripts, the 541
proposed method simultaneously mitigates error propaga- 542
tion from upstream tracking, suppresses LLM runtime fail- 543
ures, and corrects common mis-parameterizations of spatial- 544
relation functions. Comprehensive experiments on the Ar- 545
goverse 2 benchmark—covering two distinct 3D tracking 546
backbones and three heterogeneous LLMs—demonstrate 547
consistent gains across all evaluation metrics. These re- 548
sults confirm that tightly coupling vision–language align- 549
ment with error-aware code synthesis delivers substantial 550
practical benefits for large-scale autonomous-driving data 551
mining, and they suggest a clear path toward even richer 552
multimodal integration and adaptive, self-refining prompting 553
in future work. 554
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