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Abstract

In recent years, end-to-end autonomous driving has at-
tracted increasing attention for its ability to jointly model
perception, prediction, and planning within a unified frame-
work. However, most existing approaches underutilize the
online mapping module, leaving its potential to enhance
trajectory planning largely untapped. This paper proposes
MAP (Map-Assisted Planning), a novel map-assisted end-
to-end trajectory planning framework. MAP explicitly in-
tegrates segmentation-based map features and the current
ego status through a Plan-enhancing Online Mapping
module, an Ego-status-guided Planning module, and a
Weight Adapter based on current ego status. Experiments
conducted on the DAIR-V2X-seq-SPD dataset demonstrate
that the proposed method achieves a 16.6% reduction in
L2 displacement error, a 56.2% reduction in off-road rate,
and a 44.5% improvement in overall score compared to
the UniV2X baseline, even without post-processing. Fur-
thermore, it achieves top ranking in Track 2 of the End-to-
End Autonomous Driving through V2X Cooperation Chal-
lenge of MEIS Workshop @CVPR2025, outperforming the
second-best model by 39.5% in terms of overall score. These
results highlight the effectiveness of explicitly leveraging se-
mantic map features in planning and suggest new directions
for improving structure design in end-to-end autonomous
driving systems. Our code is available at https://
gitee.com/kymkym/map.git.

1. Introduction
Traditional end-to-end autonomous driving systems typi-
cally adopt a serial or parallel modular design, where the
final trajectory is decoded by a planning module. In such
pipelines, the online mapping module is only supervised
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Figure 1. Comparison between traditional and our MAP architec-
ture for end-to-end autonomous driving.

by task-specific losses, and as more downstream modules
are stacked, the contribution of online mapping becomes
increasingly vague, as shown in Fig. 1(a). Whether the seg-
mentation results are accurate or even effectively utilized by
the planner remains an often-overlooked question.

From a theoretical perspective, map information pro-
vides crucial spatial context for driving decisions, encod-
ing static environmental constraints such as road topology,
drivable areas, lane connectivity, and obstacle boundaries.
These elements form the foundation of feasible and safe
trajectories. Without proper integration of such spatial pri-
ors, planning models may rely solely on local dynamics or
heuristic rules, leading to brittle or short-sighted behavior.
Prior research in classical planning pipelines has long estab-
lished the necessity of accurate semantic maps for globally
consistent trajectory generation, and this remains equally
true in end-to-end paradigms. Thus, the absence of a prin-
cipled mechanism to inject structured map information into
planning modules significantly limits the reliability of au-
tonomous driving systems. Our work is motivated by this
theoretical gap and aims to systematically enhance planning
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robustness through explicit map-feature integration.
However, most existing models simply stack modules

within a unified architecture, with limited discussion about
whether the online mapping module is essential and how
its predictions can be effectively exploited. Moreover, al-
though recent studies [22] have shown that comparable per-
formance can be achieved using only historical ego status,
further analysis [15] reveals that such approaches are highly
sensitive to variations in input ego status, leading to sig-
nificant degradation in planning performance when the ego
status deviates slightly. This highlights the importance of
incorporating robust perception cues to ensure safe and re-
liable driving behavior. We argue that current end-to-end
models fall short not because it is unnecessary, but because
its outputs are not fully or correctly leveraged in trajectory
planning. In this work, we take map segmentation as the
entry point and propose to incorporate both semantic map
information from the online mapping module and the cur-
rent ego status to achieve a trajectory planner that is both
robust and accurate, as shown in Fig. 1(b).

To fully realize the potential of the end-to-end paradigm
and exploit map information for driving safety, while en-
suring that current ego vehicle status contributes to basic
planning robustness, we revisit the design of current frame-
works and identify three underexplored issues: (1) Online
mapping is often underutilized, and its intermediate outputs
in end-to-end models are rarely checked for correctness. (2)
The influence of the online mapping module on the final tra-
jectory is not explicitly established, as existing models offer
only vague claims about its constraint effects without tightly
coupling it with the planning process. (3) Most models use
segmentation outputs only in post-processing, treating the
map module merely as an auxiliary supervision component
during training.

To address these gaps, we propose MAP (Map Assisted
Planning), a novel framework that tightly couples map in-
formation with trajectory planning. The key idea behind
MAP is to leverage complementary strengths of map-based
context and ego-vehicle status to improve planning accu-
racy and robustness. MAP consists of three components: (i)
a Plan-enhancing Online Mapping (POM) module that pro-
duces trajectory-decodable queries, (ii) a lightweight Ego-
status-guided Planning (EP) module guided by the current
ego status, and (iii) a weight adapter that adaptively fuses
both queries from POM and EP modules.

Specifically, the map-guided planning query is obtained
by applying cross-attention between the segmentation fea-
tures and the current ego status. The ego-guided planning
query is generated by cross-attending the current ego status
with BEV features. These two queries are then fused using a
learned weight from the weight adapter, which encodes the
current ego vehicle status via an MLP and outputs a scalar
in [0, 1]. The final fused query is a weighted combination of

the two sources. Furthermore, to promote harmonious co-
operation between the two modules and avoid conflicting
outputs, only the final decoded trajectory is supervised dur-
ing training. The intermediate outputs from the EP module
remain unsupervised, allowing the system to self-organize
the fusion strategy effectively.

Our main contributions are summarized as follows:
• We propose a novel end-to-end trajectory planning

paradigm, MAP (Map-Assisted Planning), which ex-
plicitly leverages online mapping outputs to assist final
trajectory decoding.

• We revisit the role of online mapping in end-to-end driv-
ing and explore how to combine it with current ego vehi-
cle status for more robust planning through dynamic fu-
sion.

• Our method ranks first in Track 2 of the End-to-End Au-
tonomous Driving through V2X Cooperation Challenge
at the MEIS Workshop @CVPR2025, achieving state-
of-the-art performance in L2 distance, off-road rate, and
overall score.

2. Related Work

2.1. Online Mapping
Semantic parsing of HD maps plays a critical role in local-
ization, navigation, and planning. Traditional methods of-
ten rely on semantic or instance segmentation in the im-
age domain. Classical architectures like PSPNet [24] and
the DeepLab series[4–6] have been widely used to detect
fundamental map components such as roads, lane bound-
aries, and crosswalks. More recently, HDMapNet [13] in-
tegrates images, LiDAR, and trajectory inputs to produce
high-precision BEV semantic maps. VectorMapNet [17]
generates vectorized maps suitable for motion forecast-
ing via clustering and vectorization. MapTR [16] adopts
a Transformer-based framework for end-to-end vectorized
map construction, enabling direct generation of structured
elements like road boundaries and lane lines. As task re-
quirements evolve, Panoptic SegFormer [14] proposes a
unified panoptic segmentation framework that fuses seman-
tic and instance segmentation, achieving a favorable bal-
ance between accuracy and efficiency. Our work continues
to use Panoptic SegFormer on top of the UniV2X baseline
for online mapping, while structurally adapting the model
for the trajectory decoding task to explore deep integration
between map information and end-to-end planning.

2.2. Autonomous Driving Planning
Classical planning systems such as Apollo and Autoware
rely on rule-based methods, including finite state machines
(FSMs) and sampling-based search. These systems are in-
terpretable and safe but struggle in complex real-world sce-
narios. Learning-based methods such as ChauffeurNet [1]



BEVFormer

Plan-enhancing
Online Mapping

(POM)

Ego-status-guided
Planning (EP)

Fusion with Weight
Adapter

Camera Information

Planning Trajectory

Current Ego Status MLP & Embedding 128-dimension MLP

Fusion with Weight Adapter

decode

α
: Concat

: Velocity andAcceleration

: Command

: Heading Angle

Current Ego Status

BEV dense features

Current Ego Status Embedding

POM

Segmentation
Current Ego Status
Embedding

Plan Query

Plan Query

Plan Query
+

=

α

1-α

Weight

MLP

: Sigmoid

Extract current frame
information

: Cross-attnCurrent Ego Status
Embedding

Plan Query

EP

BEV dense
features

Fusion

Figure 2. Overall model architecture. In the POM module, the map-guided query is obtained via cross-attention between the ego status
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and Learning by Cheating (LBC) [3] emerged to improve
generalization by leveraging imitation or reinforcement
learning, although they still depend on explicit perception
and prediction inputs.

The end-to-end paradigm started with models like Pi-
lotNet [2] and Conditional Imitation Learning (CIL) [7],
which directly predict control signals from camera images.
However, these models suffer from instability due to the
lack of intermediate semantic supervision. Later models,
such as VectorNet [9] incorporated map and actor inter-
actions to improve trajectory quality. InterFuser [18] en-
hanced perception robustness through sensor fusion, while
ST-P3 [11] combined map segmentation, occupancy predic-
tion, and trajectory decoding into a multi-task system.

More recently, UniAD [12] proposed a unified query
design to integrate multiple tasks into a single planning-
centric model, achieving strong performance in perception,
prediction, and planning. VAD [10] introduces an end-to-
end vectorized paradigm that simplifies the pipeline by
leveraging fully vectorized scene representations, achiev-
ing state-of-the-art planning performance and improved
inference speed. SparseDrive [19] leverages the similar-
ity between motion prediction and planning to design a
parallel planning module, using sparse scene representa-
tion and collision-aware hierarchical trajectory selection.
BridgeAD [23] bridged historical and future insights to
achieve temporally consistent trajectories. However, these
models either underutilize the online mapping module or
fail to explicitly examine its role in end-to-end planning. In
this work, we revisit the role of the online mapping module
and explore how its outputs can be effectively assist current

ego state information to enhance the robustness and perfor-
mance of planning.

3. Methodology
3.1. Overview
The overall architecture of MAP is illustrated in Fig. 2. It
consists of four main components: the BEV (Bird’s Eye
View) dense feature extraction module, the Plan-enhancing
Online Mapping module, the Ego-status-guided Planning
module, and the fusion module equipped with a learnable
weight adapter. Together, these components form a cohe-
sive system that integrates perception, semantic mapping,
and trajectory planning in an end-to-end manner.

The process begins with BEVFormer, which takes as
input multi-view images captured from onboard surround-
view cameras and transforms them into a spatially aligned
BEV representation. This representation serves as the vi-
sual backbone for downstream modules. In parallel, ego-
vehicle status information, including velocity, acceleration,
and heading angle obtained from the vehicle bus, as well as
driving commands annotated in the dataset, is extracted to
provide motion context. These features are subsequently fed
into both the online mapping and trajectory planning mod-
ules, enabling them to generate more context-aware outputs.

Finally, the outputs from the mapping and planning
pipelines are passed into the fusion module, where a learned
weight adapter dynamically balances their contributions.
The resulting fused query representation is decoded to pro-
duce the final trajectory, which reflects a comprehensive in-
tegration of perception, mapping, and current ego status in-



formation.

3.2. Plan-enhancing Online Mapping Module
In the baseline, the online mapping module outputs query
representations that encode information about the driv-
able area, lane markings, crosswalks, and road boundaries.
While such segmentation features may implicitly benefit
planning, we enhance their utility by explicitly integrat-
ing them into the planning query. Specifically, we take the
memory features Mmap produced by the online mapping
module and apply cross-attention with the current ego vehi-
cle status representation Eego, generating a planning query
Qmap that directly contributes to the trajectory decoding
stage.

3.3. Ego-status-guided Planning Module
Unlike the UniV2X baseline where all upstream queries are
concatenated and fused via MLP before interacting with
BEV features, we decouple trajectory planning into a dedi-
cated module that operates in parallel with the online map-
ping pipeline. This module does not consume outputs from
the online mapping module. Instead, it leverages both the
BEV dense features FBEV and the ego-vehicle status Eego.

The ego-vehicle status Eego is constructed from CAN-
bus data, which provides the vehicle’s global position and
heading angle. Velocity and acceleration are computed from
position differences across adjacent frames, normalized by
the time intervals between frames. Driving command infor-
mation is retrieved from a separate command dataset. The
linear and nonlinear components of the ego-vehicle status
are encoded separately and then concatenated to form the
final input status vector.

Cross-attention between FBEV and the encoded ego sta-
tus yields a planning query Qplan, which is passed down-
stream for trajectory decoding.

3.4. Fusion with Weight Adapter
The fusion module receives two planning queries: Qmap
from the plan-enhancing online mapping module and Qplan
from the ego-status-guided planning module. A learnable
weight adapter is used to compute the fusion weight. It en-
codes the current ego vehicle status by applying an MLP
to its linear components (e.g., velocity, acceleration, head-
ing angle) and an embedding layer to its nonlinear part
(e.g., command). These are concatenated and further en-
coded into a 64-dimensional feature vector, which is passed
through a sigmoid activation to produce a weight coefficient
α ∈ [0, 1]. The final fused query is computed as:

Qfused = α ·Qplan + (1− α) ·Qmap

This fused representation is then decoded into a physical
trajectory using a decoder, followed by a bivariate Gaussian
activation to smooth the predicted trajectory points.

3.5. Loss Functions
The training objective consists of two primary components:
online mapping loss and trajectory planning loss.

Online Mapping Loss. The overall online mapping loss
combines detection and segmentation supervision across
multiple decoder layers. The final decoder layer supervises
panoptic segmentation with separate losses computed for
the things (foreground instances) and stuff (background se-
mantics) categories, both using Dice loss for mask super-
vision. Auxiliary losses are computed for the first L − 1
decoder layers to encourage multi-scale feature learning.
Optionally, auxiliary losses from encoder outputs further
improve detection performance. The model is trained with
a sigmoid-based focal loss for classification, L1 loss for
bounding box regression, and GIoU loss for bounding box
localization. For segmentation, the mask loss is computed
using Dice loss.

Lmap = Ldet + Lseg +

L−1∑
i=1

Ldiaux (1)

where
Ldiaux = Ldidet + Ldiseg (2)

Here, Ldet and Lseg denote the detection and segmentation
losses from the final decoder layer, respectively.

Trajectory Planning Loss. We build upon the planning
loss from UniV2X and moved them from the Ego-status-
guided Planning Module to the final supervision of the fused
decoded trajectory Qfused:
• Collision Loss: For each future timestep i, the collision

loss is computed by constructing the ego vehicle bound-
ing box B̂(i) from the predicted position (x̂(i), ŷ(i)) ex-
tracted from T̂(i) and the ground truth heading θ(i)gt
taken from Tgt(i). The loss sums the overlapping ar-
eas between this bounding box and all obstacle bounding
boxes at timestep i:

ℓcollision(T̂
(i), θ

(i)
gt ) =

Ki∑
j=1

Ω
(
B̂(i),B(i)

j

)
, (3)

where Ki is the number of obstacles at timestep i, and j
indexes these obstacles. The operator Ω(·, ·) computes the
intersection area between two bird’s-eye view bounding
boxes by calculating the polygon formed by their over-
lapping corners. The bird’s-eye view bounding boxes are
defined as:

B̂(i) = B
(
x̂(i), ŷ(i), θ

(i)
gt

)
. (4)

The overall collision loss is



Method L2 Error (m) ↓ Col. Rate (%) ↓ Off-Road Rate (%) ↓ Transm. Cos (BPS) ↓
2.5s 3.5s 4.5s Avg. 2.5s 3.5s 4.5s Avg. 2.5s 3.5s 4.5s Avg.

CooperNaut [8] 3.84 5.33 6.87 5.35 0.44 1.33 1.93 1.23 0.15 0.15 1.33 0.54 8.19× 107

UniV2X No Fusion 2.58 3.37 4.36 3.44 0.15 1.04 1.48 1.08 0.44 0.56 2.22 1.08 0
UniV2X Vanilla 2.33 3.69 5.12 3.71 0.59 2.07 3.70 2.12 0.15 1.33 4.74 2.07 8.19× 107

UniV2X BEV Fusion 2.31 3.29 4.31 3.30 0.00 1.04 1.48 0.83 0.44 0.44 1.91 0.93 8.19× 107

UniV2X* [21] 2.55 3.35 4.47 3.46 0.00 0.44 0.59 0.34 0.30 0.74 1.19 0.74 8.09× 105

UniV2X + Ego Status 2.41 3.19 4.24 3.28 0.74 1.04 0.74 0.84 1.33 1.33 1.18 1.28 8.09× 105

MAP (Ours) 1.45 2.42 3.58 2.48 0.00 0.89 1.92 0.94 0.15 1.48 1.04 0.89 1.69× 105†

Table 1. Comparison with baseline methods on the validation set under multi-step evaluation. * indicates that we re-trained the Stage
Three: Cooperative Planning component on our own hardware. †For MAP, we do not apply the same post-processing as in UniV2X, the
transmission cost of occupancy probability maps is omitted.

Team L2 (m) ↓ Col. (%) ↓ Off. (%) ↓ Score ↑

UniV2X 3.07 0.71 0.89 0.591
THU Song† 2.86 1.38 0.61 0.612
TJU Kan (Ours)* 2.67 0.67 0.46 0.841
TJU Kan (Ours) 2.56 0.96 0.39 0.854

Table 2. Comparison of models on the official leaderboard. † Sec-
ond place on the leaderboard. TJU Kan (Ours)* computes the
ego status using a fixed time interval of 0.5s between frames, while
TJU Kan (Ours) uses the actual time interval of each frame for
more accurate computation.

Lcollision =

N∑
i=1

m(i) · ℓcollision(T̂
(i), θ

(i)
gt ), (5)

where m(i) is a validity mask.
• Average Displacement Error(ADE) Loss: The Average

Displacement Error measures average Euclidean distance
between predicted trajectory T̂ and ground truth Tgt:

LADE =
1∑T

t=1 mt

T∑
t=1

mt

∥∥∥T̂t −Tgt,t

∥∥∥
2

(6)

where mt is the validity mask for timestep t.
• Adaptive Loss: To enhance the overall planning quality,

we introduce an adaptive auxiliary loss that encourages
the model to produce trajectories with lower displacement
error, fewer collisions, and reduced off-road rate.:

Ladaptive = α · LL2 + β · Lcol + γ · Loff (7)

where α, β, and γ are manually set weight coefficients,
and the calculation functions of LL2, Lcol, and Loff are
obtained from validation statistics:

LL2 =

T∑
t=1

mt ·
∥∥∥T̂t −Tgt,t

∥∥∥
2

(8)

Lcol =

T∑
t=1

1
[
T̂t ∈ Ot

]
· 1 [Tgt,t /∈ Ot] (9)

Loff =

T∑
t=1

1
[
T̂t ∈ U

]
(10)

where Ot denotes the obstacle region at time step t, U de-
notes the undrivable region, and 1[·] is the indicator func-
tion, equal to 1 if the condition holds and 0 otherwise.

4. Experiments
4.1. Experimental Settings
Datasets and Metrics. We evaluate our model on the
DAIR-V2X-seq dataset, a large-scale, real-world V2X
dataset designed for cooperative autonomous driving. This
dataset contains 72,890 frames of synchronized 2D images
and 3D point clouds with annotations, collected at 2Hz. The
V2X-seq-SPD subset used in this challenge comprises over
15,000 sequential frames from 95 scenes and serves as the
official benchmark for this task.

According to the official evaluation protocol of the com-
petition, three performance measures are used: L2 displace-
ment error, collision rate, and off-road rate. For fair com-
parison, the leaderboard score is calculated as a normalized
combination of these measures. The reference values xref
are: L2 error = 3.5 m, collision rate = 2%, and off-road rate
= 2.5%. The corresponding improvement ranges xrange are:
L2 error = 1.0 m, collision rate = 1.5%, and off-road rate =
2.5%. Each metric score is calculated as:

score =
xref − x

xrange
(11)

The overall score for this leaderboard will be the
weighted average of these three normalized metrics, with
weights of 0.5, 0.25, and 0.25, respectively.



Ablation study (on baseline) L2 Error (m) ↓ Col. Rate (%) ↓ Off-Road Rate (%) ↓

2.5s 3.5s 4.5s Avg. 2.5s 3.5s 4.5s Avg. 2.5s 3.5s 4.5s Avg.

Full UniV2X* 2.55 3.35 4.47 3.46 0.00 0.44 0.59 0.34 0.30 0.74 1.19 0.74
w/o Track Pipeline 2.53 3.32 4.45 3.43 0.44 0.74 1.04 0.74 0.44 0.89 1.33 0.89
w/o Seg Pipeline 2.56 3.35 4.48 3.46 0.15 0.44 0.74 0.44 0.30 0.74 1.18 0.74
w/o Motion Pipeline 2.53 3.33 4.44 3.43 0.30 0.74 1.18 0.74 0.59 0.89 1.33 0.94

Table 3. Ablation study on UniV2X on the validation set by masking pipeline outputs under multi-step evaluation.* indicates that we
re-trained the Stage Three: Cooperative Planning component on our own hardware.

Ablation study (on MAP) L2 Error (m) ↓ Col. Rate (%) ↓ Off-Road Rate (%) ↓

2.5s 3.5s 4.5s Avg. 2.5s 3.5s 4.5s Avg. 2.5s 3.5s 4.5s Avg.

w/o Plan-enhancing Online Mapping 2.00 3.18 4.49 3.22 0.00 1.35 2.70 1.35 0.00 1.35 2.03 1.13
w/o Ego-status-guided Planning 2.47 3.45 4.63 3.52 0.68 0.68 0.00 0.45 0.00 1.35 2.70 1.35
Full MAP 1.85 2.80 4.00 2.88 1.35 3.38 2.70 2.48 0.00 0.68 0.68 0.45

Table 4. Ablation study on our model. To reduce training time, both the training and validation sets were subsampled to one-fifth of
their original size.

Training Details. Our model predicts the future trajec-
tory of ego vehicle for 5 seconds (10 timesteps). All models
are trained using 2 NVIDIA RTX A800 GPUs. We initialize
our model with the pretrained univ2x coop e2e stg1
checkpoint from UniV2X and keep all hyperparameters
consistent with UniV2X. The training process takes approx-
imately 50 hours.

4.2. Comparison with Other Methods

First, we evaluate our method against other models on the
validation set. The results demonstrate that MAP effectively
leverages the underutilized potential of online mapping in
end-to-end systems. Compared to the UniV2X baseline, our
method achieves a 28.3% reduction in L2 displacement er-
ror (2.48 m vs. 3.46 m) on the DAIR-V2X-seq-SPD dataset
(Table 1), even without post-processing to constrain the tra-
jectory within drivable areas. Meanwhile, it maintains a
comparable off-road rate, which typically increases when
L2 error is reduced. In addition, our architecture is simpler
and more efficient, avoiding the need for heavy tracking,
motion prediction, or occupancy grid modules, and thus sig-
nificantly reducing memory usage, training time, and con-
vergence steps.

Furthermore, as shown in Table 2, our model outper-
forms the baseline model on the leaderboard of the test
set. Specifically, it achieves a 16.6% reduction in L2 dis-
placement error, a 56.2% reduction in off-road rate, and a
44.5% improvement in overall score. Notably, our model
relies only on an online mapping module and an ego-status-
guided planning module before fusion for trajectory decod-
ing, thereby avoiding the complex multi-module dependen-
cies of the baseline model. Moreover, unlike models such

as AD-MLP [22], we do not rely on historical ego vehicle
trajectories, which eliminates the dependence on past infor-
mation and better aligns with the practical requirements of
real-world autonomous driving.

4.3. Ablation Studies
Our ablation studies consist of two parts: one focusing on
the baseline model and the other on our model.

Ablation Studies on baseline model. Motivated by the
complexity and resource consumption observed in the base-
line model, we conduct a series of ablation studies to exam-
ine the contribution of each module. Surprisingly, as shown
in Table 3, removing certain modules has minimal impact,
prompting us to investigate similar findings in recent liter-
ature. Works such as [15, 20] question the effectiveness of
heavily stacked perception modules, and [15] even suggests
that the current ego status alone can yield competitive per-
formance. These insights align with our observations: dis-
abling the outputs of these modules leads to only marginal
performance degradation. We suspect that this may be due
to limitations in the original processing architecture, which
fails to effectively utilize the outputs of individual modules.
As a result, the generated planning trajectories inadequately
integrate or misinterpret upstream information.

Ablation Studies on our model. To further validate the
effectiveness of our design, we conduct ablation studies on
MAP. Given the simplicity of the architecture, we investi-
gate the impact of removing (1) the outputs of the Plan-
enhancing Online Mapping module and (2) the outputs of
the Ego-status-guided Planning module. The results are re-



ported in Table 4. As shown, each component contributes
substantially to the final performance, highlighting their ne-
cessity. However, while the full MAP model demonstrates
strong performance in L2 Error and Off-Road Rate, it shows
relatively worse performance in Collision Rate. We hypoth-
esize that this is mainly due to the removal of several per-
ception modules from the original baseline, including the
tracking module, motion prediction module, and occupancy
prediction module. These components are omitted in our de-
sign to reduce memory consumption and model complexity,
but their absence likely weakens the model’s ability to per-
ceive surrounding agents accurately, leading to a higher col-
lision rate. As future work, we plan to reintroduce selected
modules to improve collision avoidance.

5. Conclusion
In this work, we present the Map-Assisted Planning (MAP)
framework, a novel extension of the UniV2X baseline that
fully leverages map resources for trajectory planning in
V2X-enabled autonomous driving. By revisiting the often
underutilized online mapping module, MAP explicitly in-
tegrates the current ego status with trajectory guidance ex-
tracted from the segmentation map. This design enables a
dynamic fusion of spatial context and real-time ego status,
producing planning outputs that are both accurate and ro-
bust. The proposed approach addresses the limitations of
prior frameworks, where key intermediate modules were
not fully exploited, and demonstrates the potential of map-
centric information in improving end-to-end planning per-
formance.

The official leaderboard shows that MAP achieves a
16.6% reduction in L2 displacement error, a 56.2% reduc-
tion in off-road rate, and a 44.5% improvement in overall
score compared with the strong UniV2X baseline, all with-
out any post-processing. Furthermore, MAP secures the top
ranking in Track 2 of the End-to-End Autonomous Driving
through V2X Cooperation Challenge at the MEIS Work-
shop @ CVPR 2025, surpassing the second-best model by
39.5% in overall score. These results highlight the criti-
cal value of map-based information for cooperative plan-
ning and point toward promising directions for designing
the next generation of end-to-end autonomous driving sys-
tems.
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