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Abstract

End-to-end autonomous driving systems promise stronger001
performance through unified optimization of perception,002
motion forecasting, and planning. However, vision-003
based approaches face fundamental limitations in adverse004
weather conditions, partial occlusions, and precise velocity005
estimation - critical challenges in safety-sensitive scenar-006
ios where accurate motion understanding and long-horizon007
trajectory prediction are essential for collision avoidance.008
To address these limitations, we propose SpaRC-Drive,009
a query-based end-to-end camera-radar fusion framework010
for planning-oriented autonomous driving. Through sparse011
3D feature alignment, and doppler-based velocity estima-012
tion, we achieve strong 3D scene representations for refine-013
ment of agent anchors, map polylines and memory mod-014
elling. Our method achieves strong improvements over the015
state-of-the-art vision-only baselines across multiple au-016
tonomous driving tasks, including 3D detection (+4.8%017
mAP), multi-object tracking (+8.3% AMOTA), online map-018
ping (+1.8% mAP), motion prediction (−4.0% mADE),019
and trajectory planning (−0.1m L2 and −9% TPC). We020
achieve both spatial coherence and temporal consistency021
on multiple challenging benchmarks, including real-world022
open-loop nuScenes, long-horizon T-nuScenes, and closed-023
loop simulator Bench2Drive. We show the effectiveness of024
radar-based fusion in safety-critical scenarios where accu-025
rate motion understanding and long-horizon trajectory pre-026
diction are essential for collision avoidance. The source027
code of all experiments will be made available.028

1. Introduction029

Autonomous driving systems have evolved from modu-030
lar, multi-stage perception pipelines to unified end-to-end031
learning frameworks that directly map raw sensor inputs032
to vehicle control commands [2]. While conventional ap-033
proaches decompose the driving task into independent mod-034
ules for 3D object detection [9, 35, 40], multi-object track-035
ing [41, 45, 48], and online mapping [24, 27, 44], recent036
end-to-end methods [8, 47] demonstrate the advantages of037

joint optimization across perception, prediction, and plan- 038
ning tasks. 039

The new optimization objective is to generate driving 040
controls and trajectories for the ego vehicle, directly from 041
sensor inputs of cameras, LiDARs, and radars [4]. Leverag- 042
ing expert demonstrations through imitation learning, raw 043
sensor signals are directly processed to output vehicle mo- 044
tion plans and intermediate representations optimized to- 045
wards the final planning goal. Initially in Bird’s Eye View 046
(BEV) representations [28], the future trajectory of the ego 047
vehicle is regressed from an ego-token within a transformer 048
decoder, reducing the problem to a supervised learning set- 049
ting [34]. 050

However, state-of-the-art research has focused on vision- 051
centric approaches, limiting their robustness in challenging 052
scenarios such as adverse weather conditions, partial occlu- 053
sions, and long-range detection. 054

Critical for planning safety: robust depth estimation, 055
strong motion-forecasting, stable trajectories. Song et al. 056
have showed, that especially in turning scenarios, mod- 057
els suffer from unstable trajectories, vulnerability to occlu- 058
sions and temporal inconsistencies [33]. The implicit depth 059
modeling in query-based transformers lacks geometric con- 060
straints, leading to substantial localization errors in 3D per- 061
ception due to unreliable depth estimation [36]. Due to 062
noise from highly dynamic environments and following de- 063
tection errors, uncertainties arise in long-time horizon and 064
long-range planning. Moreover, causal confusion and the 065
reliance on temporal smoothness of the ego trajectory and 066
past motion pose a challenge [23]. 067

Radar sensors provide critical advantages that ad- 068
dress fundamental limitations of vision-centric approaches 069
in end-to-end autonomous driving. Their robust long- 070
range detection capabilities beyond 150m, direct veloc- 071
ity measurements through Doppler effects, and weather- 072
independent operation enable more reliable spatial rea- 073
soning through time-of-flight range measurements. Addi- 074
tionally, radar’s ability to measure relative velocities en- 075
hances multi-agent intent prediction, leading to more stable 076
and consistent trajectory planning. These complementary 077
strengths make radar fusion particularly valuable for safety- 078
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Figure 1. Overview of SpaRC-Drive. We propose a query-based end-to-end camera-radar fusion framework for autonomous driving that
jointly optimizes perception, prediction and planning.

critical autonomous driving applications.079

While multi-modal fusion with cameras and LiDAR has080
shown benefits [4], and radar fusion has proven effective for081
modular perception [5, 26, 37], the integration of radar into082
end-to-end autonomous driving remains unexplored. We in-083
vestigate the impact and potential of including radar into the084
end2end optimization and how to leverage the additional085
motion cues reflected from the environment. Due to spar-086
sity of the radar representation and precise spatial-temporal087
calibration, we propose a query-based approach that iter-088
atively refines the motion and positional charactersitcs of089
map and traffic agent representations.090

In this work, we address the critical gap in radar-091
based end-to-end autonomous driving by proposing SpaRC-092
Drive, extending the sparse representation paradigm of093
radar points and scene instances in a coherent end-to-end094
framework, and creating synergies between radar data char-095
acteristics and planning requirements. Our approach itera-096
tively refines motion and positional characteristics of both097
map and agent representations by leveraging spatial prox-098
imity of reflected radar points as strong inductive biases.099

Our main contributions are:100

• First radar-based end-to-end autonomous driving base-101
line on key benchmarks.102

• Extension of sparse fusion design for simultaneous de-103
tection, tracking, and planning queries.104

• Holistic radar-based fusion improves 3D detection105
(+4.8% mAP), multi-object tracking (+8.3% AMOTA),106
online mapping (+1.8% mAP), and motion forecast-107
ing (-4.0% mADE), optimizing trajectory prediction108
consistency (-9.0% TPC) and simulation success rates109
(+10.0%).110

• Extensive evaluation on multiple benchmarks of open-111
loop nuScenes [1] and closed-loop simulation of112
Bench2Drive [12].113

• We provide additional qualitative analysis demonstrat-114
ing superior performance through enhanced perception115
range, more accurate motion modeling, and increased116
robustness under challenging environmental conditions.117

2. Related Work 118

2.1. Planning Oriented Autonomous Driving 119

A new paradigm has emerged in autonomous driving re- 120
search, moving from multi-stage frameworks [11, 20, 21] 121
to end-to-end autonomous driving [2]. This evolution ad- 122
dresses the fundamental limitations of modular approaches: 123
information loss and error accumulation across subsequent, 124
which constrain optimal system performance. The goal is to 125
strengthen generalization to complex driving scenarios in a 126
data-driven manner. 127

Typically the state-of-the-art methods follow an encoder- 128
decoder principle, first encoding the sensor data into a 129
latent representation, then decoding the intermediate rep- 130
resentation into a driving policy [4, 7]. The pioneering 131
works of UniAD [8] and VAD [3, 14] have recently shown 132
that all tasks are communicated within unified query inter- 133
faces, enabling goal-oriented optimization through vector- 134
ized scene representations. VADv2 [3] extends the plan- 135
ner to probabilistic planning, while Hydra-MDP [22] in- 136
tegrates additional supervision from rule-based planning 137
modules. SparseDrive [34] explores sparse scene represen- 138
tations for efficient scene modelling, discarding Birds-Eye- 139
View (BEV) representations. 140

2.2. Camera-Radar 3D Perception 141

In 3D object detection, radar-camera-based approaches 142
have emerged as low-cost and robust alternative to lidar- 143
based perception. Initial works fused in the perspective 144
view [17, 29–31], associating the sparsely projecteed radar- 145
points to the dense encoded image features. 146

Grid-rendering approaches have adapted the BEVFu- 147
sion [28] paradigm to the characteristics of radar sensors 148
[15, 16, 18, 26, 37] have been proposed. Encoded by Point- 149
Pillar [19] or VoxelNet [50], dense paramatrized, but sparse 150
in information density, feature maps are combined in BEV 151
space. CRN [18], HyDRa [37], and RCBEVDet [26] tackle 152
the spatial misalignment between radar and camera sen- 153
sors, surpassing vision-based approaches in stronger veloc- 154
ity prediction, depth estimation and robustness in adverse 155
weather conditions. 156
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While RaCFormer [5] still utilizes BEV-encoded radar157
features but decodes the features via sampling in a trans-158
former, SpaRC [36] proposes a new state-of-the-art in 3D159
object detection via fully sparse encoding and fusion of160
radar points. Through point cloud serialization in the back-161
bone, it enables a direct point-to-object interaction, dynam-162
ically weighted, with strong priors for the subsequent per-163
spective aggregation and hierarchical query optimization.164
We will leverage these principles to design a query-based165
fusion of radar points and scene instances of the full sur-166
rounding environment, relevant for the planning task. re-167
ducing the spatial and temporal uncertainty168

3. Architecture169

3.1. Framework Overview.170

SpaRC-Drive extends the sparse-centric transformer of171
SparseDrive [34] by integrating the adaptive radar fusion172
strategies from SpaRC [36] into a unified end-to-end au-173
tonomous driving framework. Our approach addresses the174
fundamental challenge of fusing radar representations with175
dense visual features in a planning-oriented optimization176
pipeline.177

The overall architecture consists of three main compo-178
nents: (1) multi-modal sparse feature encoding that pro-179
cesses camera and radar inputs into compatible representa-180
tions, (2) unified sparse fusion that leverages query-based181
interactions between modalities, and (3) parallel motion182
planning that jointly optimizes the strengthened spatial183
scene representations for perception, prediction, and tra-184
jectory generation. This design enables direct end-to-end185
fusion and optimization without leveraging inefficient grid-186
based representations.187

Our framework processes 360-degree surround-view im-188
ages through a 2D convolutional neureal network back-189
bone with a feature pyramid neck, generating multi-view190
multi-scale feature maps. Simultaneously, multi-sweep191
radar point clouds (spatial coordinates, RCS intensity, and192
Doppler velocity) are encoded into sparse feature represen-193
tations through point-wise encoding and serialization using194
Point Transformer [38], producing a set of 3D embedde-195
dradar features.196

3.2. Query Design197

Detection queries represent surrounding traffic198
agents as anchor boxes with eleven parameters:199
x, y, z, lnw, lnh, ln l, sin θ, cos θ, vx, vy, vz , where200
spatial coordinates, dimensions, orientation, and ve-201
locity are jointly predicted and optimized. These an-202
chors Bd ∈ RNd×11 are paired with instance features203
Fd ∈ RNd×C obtained through K-means clustering on the204
training set.205

Map element queries model static road in-206

frastructure as polylines with Np waypoints: 207
x0, y0, x1, y1, . . . , xNp−1, yNp−1. Map instances are 208
represented by features Fm ∈ RNm×C and anchor poly- 209
lines Lm ∈ RNm×Np×2, with each element containing up 210
to 20 waypoints. 211

3.3. Sparse Fusion 212

Following SpaRC’s design [36], we implement range- 213
adaptive aggregation that dynamically weights radar fea- 214
tures based on their spatial proximity to query locations. 215
We aggregate nearby radar features for each query instance 216
using distance-weighted attention that dynamically adjusts 217
feature importance based on spatial proximity: 218

Attn(q,k,v) = softmax
(
qkT

√
d

− α
∥pq − pk∥2

rmax

)
v (1) 219

where q ∈ RNq×d queries attend to radar key-value pairs 220
k,v ∈ RNk×d via scaled dot-product attention with a 221
distance-based penalty term. The 3D positions pq ∈ RNq×3 222
and pk ∈ RNk×3 are normalized by rmax. 223

For map elements, we compute the minimum distance 224
between a radar point and polyline segments: 225

dmin =
Np−1

min
i=1

∥pr − (pi + t · (pi+1 − pi))∥2 (2) 226

where pr is the radar point position, pi and pi+1 are con- 227
secutive polyline points, and t is the projection parameter 228
clamped between 0 and 1. The projection parameter t is 229
computed as: 230

t = clamp
(
(pr − pi) · (pi+1 − pi)

∥pi+1 − pi∥22
, 0, 1

)
(3) 231

This distance metric enables effective attention between 232
radar points and map elements by considering the closest 233
line segment of each polyline. After adar-based set-to- 234
set aggregation, the decoder module encompases iterative 235
blocks of deformable perspective aggregation, self-attention 236
and feedforward networks. While the deformable aggre- 237
gations uses learnable keypoints around the anchor boxes, 238
radar module aggregates dynamically the closest radar fea- 239
tures in the vicinity of the anchor boxes and polyline. 240

3.4. Multi-modal perspective feature maps 241

To align multi-modal features across perspective and 3D 242
representations, we additionally employ sparse frustum fu- 243
sion that projects radar points into camera frustums and per- 244
forms cross-attention between radar features and image re- 245
gions. Thus, the ego-vehicle instance benefits directly from 246
the radar-enriched representation, when Avergage Pooling 247
the feature representation into a single query intialization. 248
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Method Input Backbone L2 (m) ↓ Col. Rate (%) ↓ TPC (m) ↓
1s 2s 3s Avg. 1s 2s 3s Avg. 1s 2s 3s Avg.

UniAD [8] C R101 0.45 0.70 1.04 0.73 0.62 0.58 0.63 0.61 0.41 0.68 0.97 0.68
VAD [14] C R50 0.41 0.70 1.05 0.72 0.07 0.17 0.41 0.22 0.36 0.66 0.91 0.64
GenAD [49] C R50 0.28 0.49 0.78 0.52 0.08 0.14 0.34 0.19 - - - -
MomAD [33] C R50 0.31 0.57 0.91 0.60 0.01 0.05 0.22 0.09 0.30 0.53 0.78 0.54
BridgeAD [46] C R50 0.29 0.57 0.92 0.59 0.01 0.05 0.22 0.09 - - - -
DiffusionDrive [25] C R50 0.27 0.54 0.90 0.57 0.03 0.05 0.16 0.08 - - - -

SparseDrive [34] C R50 0.29 0.58 0.96 0.61 0.01 0.05 0.18 0.08 0.30 0.57 0.85 0.57
SpaRC-Drive (Ours) C+R R50 0.24 0.47 0.79 0.50 0.01 0.06 0.20 0.09 0.27 0.47 0.70 0.48

Table 1. Comparison on nuScenes dataset with open-loop metrics. Metric calculation follows VAD [14] and MomAD [33]. C and R
denote Camera and Radar. Similar to SparseDrive [34] and MomAD [33], we deactivate the ego status information for a fair comparison
(preventing ego status leakage as analyzed in[23]).

This provides the ego instance with rich semantic and249
geometric information essential for planning-oriented op-250
timization, incorporating both visual context and radar-251
derived motion cues.252

3.5. Probabilitic Trajectory Modeling253

On top of the fusion representation, we leverage agent-level254
interactions via cross-attention, fusing history information255
of the agents and map elements. Each query, including256
the ego-instance predicts multi-modal trajectories follow-257
ing the three driving commands: turn left, turn right, and go258
straight. Each trajectory gets rescored, based on the prox-259
imity to other agent’s trajectories.260

3.6. Loss Design261

The final loss function is the average displacement error262
(ADE) between output and ground truth trajectories of the263
planned ego vehicle and the forecasted surrounding traffic264
agents. Focal loss handles the classification of the trajectory265
modes (lowest ADE corresponds to the positive sample,266
others as negative samples) and L1 loss supervises the ac-267
tual trajectory. The queries are regularized by detection and268
mapping loss through hungarian matching and box/point re-269
gression losses. A depth head in the perspective view guides270
with an additional L1 loss.271

The unified architecture enables joint optimization of272
radar fusion and planning objectives, resulting in im-273
proved spatial coherence, temporal consistency, and colli-274
sion avoidance compared to vision-only baselines.275

4. Experiments276

4.1. Experimental Setup277

For comprehensive evaluation, we evaluate our approach on278
real-world open-loop benchmarks as well as a closed-loop279
simulation environment.280
nuScenes Open-Loop [1] We evaluate on the standard281
nuScenes dataset containing 1000 driving scenes of 20 sec-282

onds each at 2Hz, captured by six surround-view cameras, 283
one LiDAR and 5 radars, collecting point clouds including 284
RCS and Doppler velocity measurements. 285

Long-Horizon Turning-nuScenes [33] To better assess 286
the temporal consistency of predicted trajectories, Song et 287
al. introduced a new validation benchmark based on the 288
most challengingturning scenarios within nuScenes valida- 289
tion set. 290

Bench2Drive [12] The NeurIPS 2024 benchmark is a re- 291
active simulation environment for autonomous driving fol- 292
lowing a closed-loop evaluation protocol under CARLA 293
Leaderboard 2.0 [10]. We use the official base configuration 294
of 1000 simulated driving scenes, captured by six surround- 295
view cameras and 5 radar sensors collecting sparse point 296
clouds with velocity measurements. The sensor setup 297
closely resembles the vehicle configuration of nuScenes. 298
the dev10 protocol [13], an officially curated subset of of 299
varying weather conditions, locations and traffic densities 300
selected to cover a wide range of difficult driving scenarios 301
with low variance. 302

Evaluation Metrics We follow the established evalua- 303
tion protocols for comprehensive assessment across all au- 304
tonomous driving tasks: 3D Object Detection: Average pre- 305
cision (mAP) and nuScenes Detection Score (NDS), which 306
comprises the weighted sum of mAP and five True Positive 307
metrics: Translation (mATE), Scale (mASE), Orientation 308
(mAOE), Velocity (mAVE), and Attribute Error (mAAE). 309
Multi-Object Tracking: Average Multi-Object Tracking Ac- 310
curacy (AMOTA) and Average Multi-Object Tracking Pre- 311
cision (AMOTP). Online Mapping: Map segmentation ac- 312
curacy using mean Average Precision (mAP) for different 313
map elements including pedestrian crossings (APped), lane 314
dividers (APd), and lane boundaries (APb). Motion Pre- 315
diction:Minimum Average Displacement Error (minADE), 316
minimum Final Displacement Error (minFDE), Miss Rate 317
(MR), and End-to-end Prediction Accuracy (EPA) c[8]. 318
Planning: L2 Displacement Error (L2), Collision Rate and 319
Trajectory Prediction Consistency (TPC) [33]. For all plan- 320
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Method 3D Object Detection Multi-Object Tracking Online Mapping Motion Prediction
mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ AMOTA↑ AMOTP↓ Recall↑ mAP↑ APped ↑ APd ↑ APb ↑ mADE↓ mFDE↓ MR↓ EPA↑

UniAD [8] 38.0 49.8 0.684 0.277 0.383 0.381 0.192 0.359 1.320 0.467 - - - - 0.71 1.02 0.151 0.456
VAD [14] 31.2 43.5 0.610 0.288 0.541 0.534 0.228 - - - 47.6 40.6 51.5 50.6 - - - -
MomAD [33] 42.3 53.1 0.561 0.269 0.549 0.258 0.188 0.391 1.243 0.509 55.9 50.7 58.1 58.9 0.61 0.98 0.137 0.499

SparseDrive [34] 41.8 52.5 0.566 0.275 0.552 0.261 0.190 0.386 1.254 0.499 55.1 49.9 57.0 58.4 0.62 0.99 0.136 0.482
SpaRC-Drive (Ours) 46.6 57.0 0.512 0.271 0.494 0.173 0.177 0.469 1.129 0.553 56.9 53.7 55.4 61.7 0.58 0.93 0.121 0.53

Table 2. Perception and motion results on the nuScenes validation dataset. † indicates the results are reproduced with the official check-
point. APd denotes APdivider. APb denotes APboundary. mADE denotes minADE. mFDE denotes minFDE.

ning metrics, we are following [33, 34] which follow the321
official settings introduced by VAD [14]. During reac-322
tive closed-loop evaluation, we additionally evaluate the323
Bench2Drive driving score and the success rate of the324
planned trajectories.325

4.2. Implementation Details326

We follow the multi-stage training pipeline of [34]. In the327
first stage, we train the multi-modal sparse feature encoder328
and the detection head. Each modality backbone is trained329
from scratch (ResNet initialized from an ImageNet check-330
point).331

Sparc-Drive uses a single configuration of 900 anchors332
for detection, 100 polylines for mapping, and 6 decoder lay-333
ers. We employ the AdamW optimizer and Cosine Anneal-334
ing learning rate scheduler for 100 epochs (similar to [34]335
and [33]) in stage one and 10 epochs in stage two. Fur-336
ther hyper-parameters will be provided in the accompany-337
ing code repository.338

The perception range is set to 50m, with an instance339
memory queue of three key frames, training in a stream-340
ing manner [35]. The motion forecasting horizon is set to341
12s and the planning prediction to 6s. The vison backbone342
encompases a ResNet-50 with an input-size of 256x704 on343
nuScenes and 384x704 on Bench2Drive (same as all com-344
pared model configurations). Our models are trained with a345
batch size of 48.346

We deactivate ego status information following347
SparseDrive conventions [33, 34] to prevent ego status348
leakage as analyzed in [23], ensuring fair comparison349
across all methods.350

4.3. Main Results351

4.3.1. Perception and Motion Forecasting Results352

As shown in Tab. 2, SpaRC-Drive achieves significant im-353
provements across all perception tasks compared to the354
SparseDrive baseline. Our radar fusion framework demon-355
strates a 4.8% mAP improvement and 4.5 NDS enhance-356
ment on the nuScenes validation set. The improvements357
are particularly pronounced in velocity estimation (mAVE:358
0.173 vs 0.261), highlighting radar’s effective contribution359
through Doppler measurements.360

Moreover, SpaRC-Drive achieves state-of-the-art track-361
ing performance with 8.3% AMOTA improvement over362

vision-centric SparseDrive. The enhanced velocity estima- 363
tion from radar Doppler directly benefits object-level mo- 364
tion modeling, leading to more stable tracking trajectories. 365
Combined with improved precision, our approach demon- 366
strates superior capability in maintaining object identity 367
across frames, critical for planning-oriented autonomous 368
driving systems. 369

The radar fusion provides also 1.8% mAP improvement 370
in online mapping, with particularly strong gains in lane 371
boundary detection. Finally, SpaRC-Drive achieves a 4.0% 372
reduction in mADE, demonstrating improved motion fore- 373
casting accuracy. The integration of radar-derived velocity 374
information enhances multi-agent intent prediction, leading 375
to more accurate trajectory forecasts. 376

4.3.2. Open-Loop Planning Results 377

Tab. 1 evaluates the performance of SpaRC-Drive in open- 378
loop planning settings, with the lowest average L2 er- 379
ror (0.50m) compared to SparseDrive (0.61m), UniAD 380
(0.73m), and MomAD (0.60m). Most significantly, we 381
achieve a 9% improvement in Trajectory Prediction Con- 382
sistency (TPC) compared to SparseDrive, indicating more 383
consistent trajectory prediction. 384

In summary, SpaRC-Drive achieves state-of-the-art per- 385
formance on the nuScenes open-loop benchmark, demon- 386
strating the effectiveness of radar fusion in improving per- 387
ception, tracking, and motion forecasting capabilities. The 388
raw strength in feature representation also outperforms 389
more sophisticated planner like MomAD [33] or Diffusion- 390
Drive [25]. 391

4.3.3. Turning Scenarios 392

When focusing the evaluation on the most complex and 393
challenging scenarios (cf . Tab. 3), the difference to vision- 394
based models increases. We are able to significantly im- 395
prove the L2 (-0.26m) and TPC metrics (-0.15), while 396
mainting the overall low collision rate (-31%) of 0.09, in 397
contrast to SparseDrive. This safety-critical scenario analy- 398
sis shows the effectiveness of our radar-based approach and 399
emphasizes the importance of multi-modal sensor integra- 400
tion for all autonomous driving designs. 401

4.3.4. Long Trajectory Prediction. 402

In Tab. 4, we increase the prediction horizon to 6s and evalu- 403
ate the performance of SpaRC-Drive in long-term trajectory 404
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Figure 2. Qualitative Examples of produced trajectories and visualized radar points of a challenging turning scenario with a long horizon
of six seconds (top: rain, middle: partially hidden objects, bottom: night). On the left, we show the front-facing camera views, predicted
bounding boxes, and projected radar points. In the middle, we visualize the perceived radar points in a top-down Bird’s-Eye-View at 50m
range, color-coded by the distance to the ego vehicle. On the right, the corresponding predicted map elements, bounding boxes with motion
forecasts and planned trajectories.

prediction. In both settings, full-set and T-nuScenes, we are405
able to significantly improve the trajectory consistencies in406
L2 and TPC, with strongly reduced collision rates. We can407
show that doubling the prediction horizon and overcoming408
partial occlusions in highly dynamic scenes shows a ma-409
jor potential for trajectory consistency and collision reduc-410
tion. In a six second prediction horizon, we can see that411
the radar-based approach is able to predict more stable tra-412
jectories. SpaRC-Drive can capitalize on longer perception413
ranges, detecting partially occluded objects and better mo-414
tion modeling.415

4.3.5. Closed-Loop Planning Results416

In Tab. 5, we generalize the findings of SpaRC-Drive to the417
closed-loop planning setting of Bench2Drive. Evaluating in418
open-loop, we again outperform the baseline SparseDrive419
by a trajectorydisplacement of 0.82 vs 0.87m. Moreover, in420
interactive scenarios like cut-ins, overtaking maneuvers or421
emergency brakings, SpaRC-Drive achieves a 20% higher422

success rate compared to SparseDrive. We will extend the 423
evaluation to the full set of 220 routes of Bench2Drive in 424
the camera-ready version. 425

4.4. Qualitative Analysis 426

Furhermore, we visualize the perception and planning per- 427
formance of our model in challenging scenarios. Fig. 2 428
shows the perception and planning performance of our 429
model visually in a challenging turning scenario with a long 430
horizon of six seconds. We project the radar points onto 431
the Bird’s-Eye-View and front-facign camera views and vi- 432
sualize the predicted map elements, bounding boxes with 433
motion forecasts and planned trajectories. 434

In Fig. 3, we compare our fusion design with the base- 435
line SparseDrive and indicate, the synergies radar-fusion 436
provides. The qualitative analysis validates that our radar 437
fusion strategy addresses fundamental limitations of vision- 438
centric approaches, particularly in scenarios where precise 439
motion understanding and long-horizon prediction are es- 440
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sential for collision avoidance and safe autonomous driving441
operation.442

Method L2 (m) ↓ Col. Rate (%) ↓ TPC (m) ↓
1s 2s 3s Avg. 1s 2s 3s Avg. 1s 2s 3s Avg.

SparseDrive [34] 0.35 0.77 1.46 0.86 0.04 0.17 0.98 0.40 0.34 0.70 1.33 0.79
SpaRC-Drive (Ours) 0.26 0.54 0.93 0.58 0.00 0.04 0.23 0.09 0.35 0.63 0.95 0.64

Table 3. Planning results on the Turning-nuScenes validation
dataset. We follow the VAD [14] evaluation metric.

Split Method L2 (m) ↓ Col. Rate (%) ↓ TPC (m) ↓
4s 5s 6s 4s 5s 6s 4s 5s 6s

nuScenes
SparseDrive [34] 1.75 2.32 2.95 0.87 1.54 2.33 1.33 1.66 1.99
SpaRC-Drive (Ours) 1.14 1.61 2.16 0.61 1.08 1.61 1.04 1.33 1.65

T-nuScenes SparseDrive [34] 2.07 2.71 3.36 0.91 1.71 2.57 1.54 2.31 2.90
SpaRC-Drive (Ours) 1.38 1.97 2.66 0.47 0.99 1.66 1.42 1.86 2.33

Table 4. Long trajectory planning results on the nuScenes and
Turning-nuScenes validation sets. We train models for 10 epochs
for 6s-horizon prediction. We follow the VAD [14] evaluation met-
ric.

Method Input Open-loop Closed-loop Metrics
Avg. L2 ↓ Driving Score ↑ Success Rate (%) ↑

SparseDrive∗ [34] C 0.87 39.9 10.0
SpaRC-Drive (Ours) C + R 0.82 55.6 30.0

Table 5. Open-loop and closed-loop evaluation results on
Bench2Drive (V0.0.3) using the base training set. We report
the closed-loop simulation in the dev10 protocol. ∗ indicates re-
implementation and provided model checkpoint of [33].

4.5. Limitations443

While our experiments demonstrate the benefits of radar444
fusion for end-to-end autonomous driving, several limita-445
tions remain. First, the radar data in both nuScenes and446
Bench2Drive provides only sparse point cloud representa-447
tions, limiting the potential density of radar-based features.448
The sensing range is also restricted to 50m, which does not449
fully leverage radar’s capability for long-range detection be-450
yond 150m. Additionally, the nuScenes radar setup lacks451
height information, preventing full 4D radar perception. In452
the simulation environment of Bench2Drive, the radar sen-453
sor placement and extrinsic calibration are suboptimal com-454
pared to real-world setups. The simplified radar sensing455
principles in the CARLA simulator also do not fully cap-456
ture the complex radar phenomenology of real sensors. To457
validate the full potential of radar-based perception for au-458
tonomous driving, extensive closed-loop testing with real-459
world radar-camera systems will be required.460

4.6. Future Work461

As next steps, we will explore more fusion mechanisms462
and extend the analysis also to dense-BEV based meth-463
ods. While our current approach operates on pre-processed464

radar point clouds, future research directions include ex- 465
ploring raw radar tensor representations and investigating 466
larger perception ranges, potentially up to 150m [6]. Ad- 467
ditionally, the domain gap between simulated and real- 468
world camera-radar data necessitates dedicated multi-modal 469
planning-oriented datasets. We envision extending this 470
work also to cooperative perception scenarios [43] on radar- 471
camera-based V2X settings, further enhancing the robust- 472
ness and safety of end-to-end autonomous driving systems 473
[32, 39, 42, 51]. 474

5. Conclusion 475

Multi-modal fusion, especially radar-based fusion, repre- 476
sents an overlooked yet promising research direction for 477
end-to-end autonomous driving. Radar’s unique charac- 478
teristics—weather immunity, direct velocity measurement 479
through Doppler effects, and long-range detection capa- 480
bilities beyond 150m—enable significant improvements in 481
scene understanding that are unavailable to vision-only ap- 482
proaches. These capabilities are highly synergistic with the 483
overall planning requirements for safe autonomous driving. 484

In this paper, we introduce SpaRC-Drive, a novel query- 485
based end-to-end camera-radar fusion framework that ex- 486
tends the sparse representation paradigm to planning- 487
oriented autonomous driving. By integrating adaptive radar 488
fusion strategies into a unified optimization pipeline, our ap- 489
proach addresses fundamental limitations of vision-centric 490
methods, particularly in safety-critical scenarios where ac- 491
curate motion understanding and long-horizon trajectory 492
prediction are essential for collision avoidance. 493
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