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Abstract

Understanding traffic scenes is a complex task for both hu-001
mans and Vision Language Models (VLMs) due to the com-002
plexity of object interactions and event transitions. Accu-003
rate and informative captions on such scenes can support004
downstream tasks such as visual question answering and005
behavior recognition. In this paper, we present a caption-006
ing framework tailored for multi-view urban traffic videos,007
focusing on generative and informative video descriptions.008
Our approach leverages a vision language model special-009
ized in spatial reasoning, which we then fine-tuned us-010
ing LoRA for efficient adaptation to traffic-specific scenar-011
ios. To enhance descriptive accuracy, we employed bound-012
ing box information to guide a best-view selection, allow-013
ing the model to focus on salient regions such as vehi-014
cles and pedestrians. We further introduced prompt engi-015
neering strategies tailored to different camera perspectives-016
including vehicle, and overhead views, in order to opti-017
mize language grounding and scene specificity. The result-018
ing captions demonstrate improved clarity and alignment019
with real-world traffic behaviors, offering valuable seman-020
tic context for downstream tasks such as visual question an-021
swering and event phase classification. Our experiments022
highlight the effectiveness of combining best-frame selec-023
tion, prompt design, and lightweight fine-tuning in produc-024
ing robust, multi-view-aware video captions under complex025
urban scenarios.026

1. Introduction027

Recent advances in multi-modal learning have produced028
vision-language models (VLMs) that can simultaneously029
interpret visual cues and generate fluent natural language.030
Flagship systems such as LLaVA [14], GPT-4V [16] and031
Qwen-VL [3] exhibit impressive general-purpose capabil-032
ity, but their performance tends to drop when faced with033
domain-specific imagery that differs from internet photo034
corpora. Urban traffic footage – shot from multiple van-035

tage points, populated by fast-moving objects, obscured by 036
occlusion and motion blur – presents exactly this kind of 037
shift. 038

In this study, we focus on short video clips captured 039
concurrently from overhead, dashboard and roadside cam- 040
eras [15]. Crafting a concise description for each multi- 041
view clip involves identifying the most informative cam- 042
era angle, isolating key actors(e.g, vehicles, pedestrians), 043
and articulating their interactions with spatial and tempo- 044
ral clarity. While possible to aggregate multiple views, 045
our approach simplifies the problem by selecting a sin- 046
gle best view per clip-guided by bounding box activity to 047
reduce redundancy and computational load. This could 048
be especially valuable in cooperative autonomous driving 049
applications where the most informative streams of data 050
need to be narrowed down from multiple sources. Al- 051
though the dataset contains only about 20,000 annotated 052
clips, the underlying SpaceLLaVA model has over 7 bil- 053
lion parameters. Fully fine-tuning such a model is both 054
memory-intensive and prone to overfitting when data is lim- 055
ited. We tackle these constraints with BestViewPrompt- 056
Tuned SpaceLLaVA, a lightweight pipeline that combines 057
parameter-efficient adaptation, bounding-box-driven view 058
selection, and perspective-aware prompt design: 059

1. LoRA adaptation: low-rank adapters update fewer than 060
2 % of SpaceLLaVA’s weights, enabling overnight train- 061
ing on a single commodity GPU. 062

2. Best-view extraction: bounding boxes from object 063
detectors guide a simple heuristic that picks the 064
frame–camera pair richest in traffic activity, eliminating 065
redundant or empty views. 066

3. Perspective-aware prompts: tokens that encode cam- 067
era type ([VEHICLE], [OVERHEAD]) supply geo- 068
metric context and steer the model toward spatially 069
grounded phrasing. 070

To measure caption quality, we report1 BLEU [17], ME- 071
TEOR [4], ROUGE-L [13], and Consensus-based Image 072

1We use the AI City Challenge official evaluation script to compute
these metrics.
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Description Evaluation (CIDEr) [20]:073

1. BLEU measures n-gram overlap between generated and074
reference captions.075

2. METEOR accounts for synonym and stem matches.076
3. ROUGE-L evaluates the longest common subsequence.077
4. CIDEr scores based on TF-IDF–weighted n-gram simi-078

larity with consensus captions.079

We compute these metrics separately for pedestrian and ve-080
hicle categories, then normalize the average to a 0–100 scale081
across both internal and external sets of the AI City Chal-082
lenge 2025 Dataset. Our system improves the CIDEr score083
over a vanilla SpaceLLaVA baseline by ∆CIDEr = 0.08,084
which although may seem modest, it indicates a measurable085
improvement in the model’s ability to produce more infor-086
mative human-aligned descriptions. Whom are especially087
important in structured, domain-specific tasks like traffic088
scene captioning.089

Contributions. In addition to the framework described090
above, we contribute an ablation analysis that quantifies091
the individual impact of view selection, prompt design, and092
parameter-efficient fine-tuning.093

2. Related Work094

In this section, we review the foundational work relevant095
to our video captioning approach in the traffic safety do-096
main. We begin by surveying major developments in vi-097
sion–language models (VLMs), which serve as the back-098
bone for multi-modal understanding. Following that, we099
highlight recent efforts to adapt such models to domain-100
specific applications in autonomous driving and traffic anal-101
ysis, with a focus on large-scale, real-world datasets.102

2.1. Vision-Language Models103

Recent years have witnessed rapid progress in vision-104
language models (VLMs) that jointly process both image105
and text modalities. A foundational model in this space106
is CLIP [18], which aligns image-text pairs through con-107
trastive pre-training, enabling robust zero-shot performance108
on downstream tasks. More advanced architectures such109
as Flamingo [1] interleave image and text tokens via gated110
cross-attention, allowing fluent, context-aware generation,111
but at the cost of enormous parameter counts. Blip-2 [11]112
introduces a lightweight Q-former module that bridges the113
modality gap between image embeddings and a frozen lan-114
guage model (Flan-T5 [7]), enabling efficient and effec-115
tive fine-tuning. MiniGPT-4 [22] simplifies further by pro-116
jecting visual features directly into Vicuna [6] an open-117
source, instruction-tuned derivative of LLaMA-through a118
single projection layer, but sacrifices spatial resolution. An119
even simpler pipeline is used in MiniGPT-v2 [5], which di-120
rectly maps ViT-encoded tokens to the language model’s121
embedding space, trading modeling flexibility for simplic-122
ity.123

While these models offer increasingly general capabili- 124
ties, most are trained on internet-scale image–text corpora 125
and lack strong spatial or temporal grounding—two proper- 126
ties critical for real-world video understanding. 127

2.2. VLMs for Driving Scenarios 128

Applying VLMs to driving contexts presents unique chal- 129
lenges due to the need for spatial grounding, fine-grained 130
temporal understanding, and multi-camera fusion. GPT-4V 131
[16] shows promise in understanding urban scenes but 132
struggles without domain adaptation [10], particularly when 133
faced with motion blur or occlusion. Dolphins [21], based 134
on OpenFlamingo [2], incorporates driving-specific pre- 135
training to improve captioning in dynamic traffic videos 136
but processes frames independently and lacks multi-view 137
integration. DriveGPT-4 [12] further bridges perception 138
and action by generating both descriptions and control sig- 139
nals from video–text input, though it requires reinforcement 140
learning and significant training cost. 141

These works highlight the importance of tailoring VLMs 142
to the structured demands of driving tasks. Yet, few have ad- 143
dressed the unique setting of multi-view captioning in urban 144
traffic scenes—where camera selection, perception, spatial 145
precision, and efficient training are all critical. 146

Our distinction. We build on SpaceLLaVA, a 7B- 147
parameter VLM explicitly trained for spatial reasoning, and 148
propose a novel BBoxPrompt-SpaceLLaVA pipeline that (i) 149
selects the most informative view using bounding-box ac- 150
tivity, (ii) injects geometric priors via perspective-aware 151
prompts, and (iii) applies LoRA-based fine-tuning for do- 152
main adaptation under limited data. 153

3. Methodology 154

3.1. Overview 155

We build upon VLMS to generate fine-grained video cap- 156
tions in urban traffic environments. Our method includes 157
selecting optimal camera views, applying visual prepro- 158
cessing by cropping bounding box regions to focus the 159
model’s attention, constructing textual prompts with con- 160
textual tokens, and fine-tuning using Low-Rank Adaptation 161
(LoRA) for efficiency. While the framework is compatible 162
with most spatially-aware VLMs, we implement it using 163
SpaceLLaVA-7B, a publicly available model trained for 164
vision-language reasoning, due to its strong performance 165
and open-source availability. 166

3.2. Dataset Preparation 167

Our dataset supplies synchronized overhead, 168
vehicle-mounted, and roadside videos, each accompa- 169
nied by frame-level bounding boxes for pedestrians and 170
vehicles. 171
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Figure 1. Our pipeline consists of using the generated bounding
boxes to calculate the video in which the interested pedestrian and
vehicle are most visible. Then passing in two image (full image,
cropped image) corresponding to the event phase of our scenario.
These images are then passed into the VLM, which then generates
a descriptive caption of both the pedestrian and interested vehicle.

Bounding Box-Guided Crops. To improve spatial focus172
and reduce background noise, we preprocess each frame us-173
ing bounding boxes to highlight localized views of key sub-174
jects (e.g., pedestrians, vehicles). This allows the model to175
generate more precise, context-aware captions by attending176
directly to the relevant visual regions.177

Best-View Selection Following the guided view-selection178
strategy of CityLLaVA [8], we treat every clip as a tuple179
S = {V, T,B}, where V is the three-view video, T the180
ground-truth caption, and B the set of 2-D detections. For181
each view we compute the average vehicle area Av and182
average pedestrian area Ap (in pixels) over its bounding183
boxes. A view is discarded if184

Ŝi =


False, if Api

> thrp and Avi > thrv,

False, if Api > thrp and Avi = 0,

False, if Avi > thrv and Api = 0,

True, otherwise.

185

with thresholds τp = 3,000 px and τv = 5,000 px (0.3186

% and 0.5 % of a 1920×1080 frame). Intuitively, we keep 187
views that contain either clear vehicles or clear pedestrians 188
but down-weight views dominated by one class to the ex- 189
clusion of the other, which often correspond to occlusions 190
or distracting foreground objects. 191

For the surviving view we perform two visual crops: 192

1. Global frame — the full 1920×1080 image. 193
2. Local crop — the union of all bounding boxes, iso trop- 194

ically enlarged by 1.5× to retain context. 195

Both images are fed to the VLM by padding them 196
side-by-side and encoding as a single visual token se- 197
quence; this gives the model simultaneous access to global 198
layout and fine-grained object detail. 199

3.3. Prompt Engineering 200

To help the model generate context-aware captions, we con- 201
struct textual prompts that encode scene-specific informa- 202
tion. One key element is the inclusion of an event phase 203
token, which reflects the semantic category of the cur- 204
rent video clip — such as [AVOIDANCE], [JUDGMENT], 205
[RECOGNITION] or [PRECOGNITION]. These labels 206
correspond to different types of pedestrian or vehicle be- 207
havior. 208

These tokens are then prepended to a fixed prompt tem- 209
plate that instructs the model to describe the clip in a struc- 210
tured format. For example: 211

[AVOIDANCE]: Your job is to output a 212
single, structured caption wrapped 213
in <answer>...</answer> tags. The 214
caption should briefly describe 215
the subject’s appearance, position, 216
motion, and surroundings, using 217
short declarative sentences. Avoid 218
conversations or extra commentary. 219

This prompt helps the model align its language genera- 220
tion with the high-level activity depicted in the scene, en- 221
couraging more relevant and behavior-specific descriptions. 222
To empirically validate the impact of including event phase 223
tokens, we compare caption outputs generated by the model 224
with and without the token prepended to the prompt. Fig- 225
ure 2 shows the input image used for this test. 226

Table 1 presents the resulting captions. The inclusion of 227
the [AVOIDANCE] token leads to a caption that captures 228
the subject’s behavior during the avoidance phase more pre- 229
cisely, whereas the caption generated without the token is 230
more generic and less descriptive. 231

3.4. Fine-tuning with LoRA 232

Fine-tuning the entire SpaceLLaVA model can be compu- 233
tationally expensive. We adopt LoRA [9], which intro- 234
duces lightweight trainable adapter modules into the atten- 235
tion layers of the transformer. These adapters consist of a 236
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Figure 2. Input traffic scene used for prompt comparison experi-
ments.

Table 1. Comparison of captions generated using original prompt
versus prompt with event phase token.

Original Prompt Caption Prompt with Event Phase
Token Caption

The pedestrian is wearing
dark clothing and standing
still.

The pedestrian wearing a
black shirt is crossing the
street in front of the vehicle
during the avoidance phase.

pair of low-rank matrices that project the input to a smaller237
subspace and then back to the original dimension. This al-238
lows the model to learn task-specific behavior with minimal239
updates to the full model weights. Key hyper parameters240
include:241

• Rank (r = 128): Controls the complexity of the adapter’s242
bottleneck layer.243

• Alpha (256): Scales the adapter updates relative to the244
base model.245

• Dropout (0.05): Adds regularization to prevent overfit-246
ting.247

We utilize DeepSpeed ZeRO-2 optimization [19] to248
manage memory usage during training on an NVIDIA249
A100 GPU with 40GB VRAM. Additional techniques such250
as gradient checkpointing, which recomputes activations251
during backpropagation to save memory, and lazy prepro-252
cessing, which defers image-to-token conversion until just-253
in-time execution, help further reduce peak memory con-254
sumption.255

We use the cross-entropy loss function to train the256
model, which measures the difference between predicted257
caption tokens and ground truth captions. This objective258
encourages the model to generate fluent and accurate de-259
scriptions aligned with annotated labels.260

3.5. Inference261

At inference time, the model receives a selected video frame262
along with its cropped bounding-box views and a corre-263
sponding prompt. We generate captions using nucleus sam-264
pling with top-p = 0.9, a decoding strategy that restricts265

Figure 3. Training/loss (cross-entropy) curve during fine-tuning
of the vision-language model using LoRA adapters. The loss de-
creases steadily over epochs, indicating stable convergence with-
out overfitting.

sampling to the smallest set of most probable next tokens 266
whose cumulative probability exceeds p. This balances 267
output diversity with fluency by avoiding both highly un- 268
likely and overly generic completions. The caption length 269
is capped at 512 tokens to reduce verbosity and minimize 270
hallucinated content. 271

Final captions are post-processed by extracting the text 272
inside the first <answer>...</answer> block, then 273
removing any surrounding prompt artifacts (e.g., USER:, 274
ASSISTANT:) if present. If no structured tags are found, 275
we fall back to returning the original model output. This en- 276
sures that only the intended caption content is retained for 277
evaluation. 278

4. Experiments 279

4.1. Evaluation Metrics 280

To evaluate caption quality, we use standard natural lan- 281
guage generation metrics: BLEU-4, METEOR, ROUGE-L, 282
and CIDEr. These metrics assess aspects such as n-gram 283
precision, semantic overlap, and syntactic fluency between 284
generated captions and reference annotations. 285

Following common practice in multi-view traffic cap- 286
tioning benchmarks, we report a composite score computed 287
as: 288

Score =
BLEU-4 + METEOR + ROUGE-L + 0.1 · CIDEr

4
·100. 289

All results are computed on the AI City Challenge 2025 290
validation set. 291

4.2. Ablation Study 292

To isolate the contribution of each component, we vary one 293
factor at a time and hold the others fixed. 294

graphicx 295
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Table 2. Captioning performance comparison across model variants and input settings.

Model / Setting BLEU-4 METEOR ROUGE-L CIDEr

Base (Zero-shot) 0.017 0.187 0.136 0.000
LoRA Fine-tuned 0.033 0.265 0.213 0.000
LoRA + Prompt Engineering 0.038 0.280 0.225 0.000
LoRA + BBox Cropping 0.041 0.290 0.230 0.080
LoRA + Prompt + BBox Cropping 0.045 0.300 0.240 0.080

With BBox: The color of the
pedestrians shoes are red.

Without BBox: The color
of the pedestrians shoes are
black.

Figure 4. Comparison of SpaceLLaVA-7B captions with bound-
ing boxes (left) and without bounding box-guided input (right).
Bounding box crops help the model focus on relevant actors and
generate more informative descriptions. Both tests were given the
same prompt ”What color is the color of the interested pedestrians
shoes?

Bounding-Box Crops. Removing cropped local views296
lowers fine-grained detail recognition, decreasing CIDEr by297
≈ 0.08 points.298

Effect of Bounding Box Cropping. We investigate the299
impact of bounding box-guided cropping on caption gener-300
ation quality. As shown in Figure 4, the model produces301
more specific and semantically rich captions when the sub-302
ject is isolated using bounding boxes. In contrast, global303
views often lead to vague or contextually ambiguous de-304
scriptions, especially in cluttered scenes or when the subject305
occupies a small area.306

Why Bounding Boxes Help. Bounding box cropping307
provides critical spatial focus by isolating the key sub-308
jects—pedestrians and vehicles—within each frame. This309
focused view reduces background clutter and irrelevant de-310
tails that can confuse the vision-language model, especially311
in busy urban traffic scenes. By presenting the model with312
a focused image centered on the actor of interest, it is better313
able to extract fine-grained features such as clothing color,314
posture, or subtle motions that are essential for accurate315
captioning.316

Moreover, bounding box crops improve the model’s abil-317
ity to distinguish overlapping actors or small objects that318
would otherwise be lost or misinterpreted in a global view.319
This precise localization enhances the semantic relevance320
of generated captions, leading to improvements in metrics321

like CIDEr and BLEU-4. 322

Prompt Engineering. As show in table 2 dropping the 323
camera/phase tokens degrades BLEU-4 and CIDEr, con- 324
firming that structured prompts steer the model toward more 325
context-aware descriptions. 326

5. Concluding Remarks 327

5.1. Limitations 328

Our current system relies on a single representative frame 329
at training time; richer temporal modeling may further im- 330
prove motion-related descriptions. In addition, BLEU-4 is 331
sensitive to exact word overlap and can undervalue seman- 332
tically correct paraphrases, so future work should consider 333
alternative metrics. 334

5.2. Future Directions 335

There are several promising avenues to extend this work: 336

• Temporal Modeling. While our current system pro- 337
cesses frames independently, incorporating a lightweight 338
temporal encoder (e.g., a causal transformer or tempo- 339
ral convolution) could allow the model to capture motion 340
patterns and inter-frame dependencies directly, improving 341
coherence and action recognition. 342

• Prompt Optimization. We aim to explore automated 343
prompt search using instruction-tuned LLMs to systemat- 344
ically optimize prompt phrasing and structure across dif- 345
ferent event types and views. 346

• Enhanced Use of Detection Outputs. Beyond cropping 347
around bounding boxes, future work may leverage class 348
labels, detection confidence scores, and object trajecto- 349
ries (e.g., from YOLO or ByteTrack) to provide richer 350
grounding cues, helping the model better understand spa- 351
tial relationships and evolving scene dynamics. 352

• Best-View Selection Strategies. Our current view selec- 353
tion heuristic is based on bounding-box area thresholds; 354
future work could investigate alternative criteria (e.g., vis- 355
ibility metrics or learned scoring functions), as well as 356
adaptive threshold tuning based on scene complexity. 357

• Broader VLM Evaluation. While we used SpaceLLaVA 358
due to its strong spatial reasoning capabilities, applying 359
our pipeline to other spatially-aware VLMs would help 360
assess generalization and robustness across architectures. 361
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5.3. Conclusion362

We presented a parameter-efficient SpaceLLaVA-7B cap-363
tioning pipeline that combines bounding-box–guided view364
selection, view-aware prompts, and LoRA fine-tuning. Our365
approach improves both language quality and event-phase366
alignment on a benchmark dataset, demonstrating the value367
of targeted prompt engineering and lightweight adaptation368
for multi-view traffic video captioning.369
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