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Abstract

With the rapid advancement of autonomous driving tech-001
nology, vehicle-to-everything (V2X) communication has be-002
come a key enabler for enhancing perception range and003
driving safety by extending visibility beyond the line of004
sight. However, integrating multi-source sensor data from005
both ego-vehicles and infrastructure under real-world con-006
straints—such as limited communication bandwidth and007
dynamic environments—poses significant technical chal-008
lenges. To accelerate progress in this domain, we organized009
the End-to-End Autonomous Driving through V2X Cooper-010
ation Challenge, featuring two tracks: cooperative tempo-011
ral perception and cooperative end-to-end planning. Built012
upon the UniV2X framework and the V2X-Seq-SPD dataset,013
the challenge attracted over 30 teams worldwide and pro-014
vided a unified benchmark for evaluating cooperative driv-015
ing systems. This paper presents the design and outcomes016
of the challenge, identifies key research challenges—such as017
bandwidth-aware fusion, robust multi-agent planning, and018
heterogeneous sensor integration—and analyzes emerging019
technical trends among top-performing solutions. By con-020
fronting realistic communication and fusion constraints, the021
challenge advances the development of scalable and reli-022
able V2X-cooperative autonomous driving systems.023

1. Introduction024

Autonomous driving has witnessed rapid advancements in025
recent years, driven by the progress of perception [4, 7],026
planning [18, 19], and end-to-end [8, 17, 21, 25, 32] tech-027
nologies. However, the prevailing paradigm of single-028
vehicle autonomy, which relies solely on onboard sensors029
and processing units, is inherently limited by its constrained030
field of view, susceptibility to occlusions, and lack of aware-031
ness of occluded or distant objects [1, 40]. These limi-032
tations pose significant challenges in complex urban envi-033
ronments, where safety-critical decision-making demands a034
more comprehensive understanding of the surrounding traf-035

fic context. In particular, scenarios involving intersections, 036
occluded crosswalks, or multi-lane merges often expose the 037
limitations of local perception and lead to suboptimal or un- 038
safe maneuvers. 039

To address these constraints, vehicle-to-everything 040
(V2X) cooperation has emerged as a promising 041
paradigm [38, 47]. By enabling ego-vehicles to ex- 042
change real-time sensory and state information with 043
roadside infrastructure and nearby agents, V2X coop- 044
eration extends perception beyond the line of sight and 045
supports more informed and robust perception and final 046
planning performance [28, 29]. The integration of coopera- 047
tive perception and cooperative planning is thus becoming 048
a pivotal frontier in the development of scalable and safe 049
embodied intelligence systems for autonomous driving. 050

Despite the growing body of research on V2X-enabled 051
systems, developing deployable and generalizable algo- 052
rithms for cooperative driving remains challenging. Real- 053
world constraints such as limited communication band- 054
width [10], latency, and heterogeneous sensor configura- 055
tions [39] complicate the design of end-to-end solutions. 056
Moreover, robust fusion of multi-view, multi-agent data [22, 057
41] for downstream planning under dynamic scenarios is 058
still an open research problem. These challenges are fur- 059
ther compounded by the asynchronous nature of inter-agent 060
communication, variable sensor quality across nodes, and 061
the lack of standardized protocols for representation and fu- 062
sion. 063

To promote research in this direction, we organized the 064
first End-to-End Autonomous Driving through V2X Co- 065
operation Challenge as part of the Multi-Agent Embodied 066
Intelligent Systems (MEIS) Workshop @ CVPR 2025. The 067
challenge aims to benchmark and advance the state-of-the- 068
art in V2X-enhanced driving agents through two comple- 069
mentary tracks: (1) Cooperative Temporal Perception, fo- 070
cusing on multi-agent detection and tracking; and (2) Coop- 071
erative End-to-End Planning, targeting V2X-aware sensor- 072
to-action learning. Built upon the open-source UniV2X 073
framework [46] and V2X-Seq-SPD dataset [45], this chal- 074
lenge provides a reproducible platform for evaluating coop- 075
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erative perception and planning systems in real-world urban076
driving scenarios.077

This paper presents a comprehensive summary of the078
competition design, research challenges, participant solu-079
tions, and key findings. Specifically, we (i) outline the mo-080
tivation and structure of the challenge, (ii) identify critical081
research issues emerging from participant submissions, (iii)082
analyze the technical trends and progress demonstrated, and083
(iv) discuss future directions for cooperative multi-agent au-084
tonomous driving systems.085

2. Background086

2.1. Related Benchmarks and Challenges087

Over the past decade, a variety of datasets and benchmarks088
have been proposed to evaluate the perception and planning089
capabilities of autonomous driving systems. Notable ex-090
amples include nuScenes [2], Waymo Open Dataset [30],091
Argoverse [6], nuplan-based dataset [3, 12, 16, 26], and092
the CARLA-based dataset [9, 13, 20], which focus on ob-093
ject detection, motion prediction, and planning under the094
single-agent paradigm. While these benchmarks have sig-095
nificantly contributed to the development of perception,096
decision-making and end-to-end pipelines, they largely ne-097
glect the potential of inter-agent cooperation and V2X com-098
munication [23, 43, 52], which are essential for overcoming099
occlusion and limited sensor range in congested urban envi-100
ronments. These limitations hinder the modeling of realistic101
traffic scenes involving multi-agent interactions and limited102
visibility, such as those found at intersections, curved roads,103
or occluded pedestrian zones.104

Several recent efforts, such as DAIR-V2X [43], V2X-105
Sim [23], TUMTraf [52], V2X-Real [34], V2v4Real [37],106
RCooper[15], Griffin[31] and V2XSet [36], have intro-107
duced datasets and tasks tailored for cooperative perception.108
These datasets incorporate multi-view inputs from vehicles109
and roadside infrastructure, enabling exploration of early110
and intermediate sensor fusion methods to enhance 3D de-111
tection and tracking performance. However, most of these112
benchmarks remain focused on perception tasks, with rela-113
tively limited emphasis on downstream planning [45]. In114
particular, few existing datasets provide a unified setting115
where both perception and planning tasks are evaluated with116
the same data and scenario structure.117

The End-to-End V2X Cooperation Challenge addresses118
this gap by integrating cooperative perception and planning119
tasks into a two-track benchmark framework. It builds on120
the open-source UniV2X system [46] and the V2X-Seq-121
SPD dataset [45], which jointly support detection, tracking,122
and motion planning based on multi-agent sensor inputs.123
By standardizing the task input/output formats and provid-124
ing an end-to-end development pipeline, the challenge en-125
ables participants to explore perception-to-planning inte-126

gration under realistic multi-view sensing conditions. The 127
use of distinct sensing viewpoints and calibration setups 128
naturally reflects challenges in real-world cooperative driv- 129
ing deployments. This joint benchmark structure promotes 130
a more comprehensive understanding of algorithm perfor- 131
mance in multi-agent urban environments. 132

2.2. UniV2X Framework and Dataset 133

The challenge is built upon the open-source UniV2X frame- 134
work [46], which serves as the first unified end-to-end 135
pipeline for cooperative autonomous driving. UniV2X in- 136
tegrates multiple key modules—cooperative perception, in- 137
termediate representation learning, occupancy forecasting, 138
and planning—into a cohesive architecture. It supports 139
both vehicle-side and infrastructure-side sensing, facilitat- 140
ing multi-view feature alignment and fusion through a hy- 141
brid sparse-dense transmission protocol. This allows for ef- 142
ficient message passing while mitigating the communica- 143
tion burden common in dense feature maps, particularly in 144
bird’s-eye-view (BEV) frameworks. 145

The underlying dataset, V2X-Seq-SPD [45], provides 146
synchronized and calibrated sensor recordings from ego ve- 147
hicles and roadside units (RSUs), including front-view im- 148
ages, LiDAR point clouds (converted to BEV), and seman- 149
tic commands. Ground-truth labels for 3D object detec- 150
tion, tracking, and future trajectories are included, allow- 151
ing evaluation across both perception and planning tasks. 152
The dataset reflects diverse urban driving scenarios with dy- 153
namic traffic flow, intersections, and occlusions—thus cap- 154
turing key challenges faced by V2X systems. 155

UniV2X serves as the official baseline for both tracks of 156
the competition. In Track 1, it provides a fully sparse 3D 157
detection and tracking solution with anchor-guided query 158
fusion. In Track 2, it offers a modular sensor-to-planning 159
pipeline that leverages query-based adapters to dynamically 160
route fused features into planning heads. These designs pro- 161
vide participants with a strong starting point and encourage 162
innovation in overcoming current bottlenecks. 163

3. Challenge Design 164

3.1. Task Setup and Evaluation Metrics 165

The challenge comprises two complementary tracks de- 166
signed to evaluate different aspects of V2X cooperative au- 167
tonomous driving: Cooperative Temporal Perception and 168
Cooperative End-to-End Planning. 169

1) Track 1: Cooperative Temporal Perception This 170
track focuses on cooperative 3D detection and multi-object 171
tracking in urban scenarios involving ego vehicles and road- 172
side infrastructure. Each participant receives a stream of 173
synchronized multi-agent sensor data, including front-view 174
camera images from both ego vehicles and roadside units 175
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Table 1. Comparison of autonomous driving datasets by data source, held competitions, task description, V2X support, end-to-end (E2E)
support. Abbreviations: V2X = V2X model support, E2E = End-to-End driving model support, Det = Detection, Trk = Tracking, MPre = Motion Prediction,
Pla = Planning (Open-loop), CL = Closed-loop evaluation

Dataset Reality Competition Task description V2X E2E
nuScenes [2] Real CVPRW19, ICRAW20, ICRAW21 Det,Trk,MPre,Pla ✗ ✓
Waymo [30] Real WOD20-25 Det,Trk,MPre,Pla ✗ ✓
Argoverse [6] Real CVPRW22, CVPRW23, CVPRW25 Det,Trk,MPre,Pla ✗ ✓
CARLA [11] Sim CVPRW19, NIPSW20-22, CVPRW24 Det,Trk,MPre,Pla,CL ✗ ✓
NAVSIM [12] Real CVPRW24, CVPRW25, ICCVW25 Det,Trk,MPre,Pla,CL ✗ ✓
DAIR-V2X [43] Real AIR-Apollo23 Det ✓ ✗
TUMTraf [52] Real ICCVW25 Det ✓ ✗
V2v4Real [37] Real – Det ✓ ✗
V2X-Sim [23] Sim – Det,Trk ✓ ✗

V2X-Seq [45] Real CVPRW25 (Ours) Det,Trk,Pla ✓ ✓

(a) Challenge Baseline: UniV2X Architecture [46].

(b) An example of V2X-Seq-SPD Dataset [45]

Figure 1. Challenge Baseline UniV2X [46] and V2X-Seq-SPD Dataset [45]

(RSUs), along with camera calibration parameters, vehicle176
ego states, and high-level command information. These in-177
puts are drawn from realistic driving sequences, featuring178
intersections, dynamic obstacles, and partial observability179
across viewpoints.180

The primary task is to detect vehicles of the merged181
“Car” category in 3D space and associate consistent track-182
ing IDs across time, leveraging both temporal information183
and cross-agent collaboration. The design emphasizes the184
need for participants to model how complementary view-185
points—e.g., an RSU’s top-down view and the ego vehicle’s186
forward-facing camera—can be fused over time to disam-187

biguate occluded or partially visible objects. 188

To evaluate performance, we employ two widely used 189
metrics in cooperative perception benchmarks: mean Av- 190
erage Precision (mAP), which measures spatial detection 191
accuracy, and Average Multi-Object Tracking Accuracy 192
(AMOTA), which captures temporal consistency of object 193
identities. The final evaluation score is computed as the un- 194
weighted average of the two (0.5 mAP + 0.5 AMOTA), al- 195
lowing fair comparison between detection and tracking ca- 196
pabilities. 197

This task encourages the design of fusion algorithms ca- 198
pable of aligning features from spatially distinct viewpoints 199
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and maintaining identity consistency across frames, even200
under object occlusion, motion blur, or disjoint agent fields201
of view. It also offers a platform to evaluate temporal mod-202
eling techniques such as query-based memory propagation,203
agent-aware attention, and cross-frame association strate-204
gies. Ultimately, this track aims to advance the robustness205
and scalability of cooperative perception systems deployed206
in real-world driving environments.207

2) Track 2: Cooperative End-to-End Planning This208
track aims to evaluate complete sensor-to-planning209
pipelines that generate future motion trajectories based on210
fused perception from multiple agents. Participants are211
tasked with predicting a sequence of future waypoints over212
a 5-second horizon, using the same input modalities as in213
Track 1, including ego and infrastructure camera images,214
calibration data, command signals, and current ego vehicle215
states.216

Unlike modular approaches that decouple perception and217
planning, this track encourages joint reasoning across the218
full autonomous driving stack, from raw sensor input to219
trajectory-level output. The data spans a variety of chal-220
lenging urban situations—such as intersection negotiation,221
overtaking, and lane turning—requiring the agent to antici-222
pate dynamic scene evolution and react safely under partial223
observability.224

Performance is assessed using three complementary225
metrics:226

• L2 Error, which measures the Euclidean distance between227
predicted and ground-truth waypoints, reflecting trajec-228
tory accuracy;229

• Collision Rate, which quantifies how often the predicted230
trajectory intersects with other traffic participants;231

• Off-road Rate, which measures deviation from the driv-232
able area and thus reflects constraint violation or poor233
lane adherence.234

To obtain a comprehensive evaluation, each metric is av-235
eraged at three future timestamps (2.5s, 3.5s, 4.5s), balanc-236
ing short-term responsiveness and long-term planning qual-237
ity. A min-max normalization is applied based on prede-238
fined reference ranges, and the final score is computed as a239
weighted sum: 0.5 × normalized L2 Error + 0.25 × normal-240
ized Collision Rate + 0.25 × normalized Off-road Rate.241

This track emphasizes planning robustness in complex242
multi-agent scenes, and highlights the importance of in-243
tegrating spatial-temporal reasoning, intent understanding,244
and safety guarantees into the learning process. It offers245
a testbed for evaluating architectures such as transformer-246
based fusion planners, modular policy networks, and multi-247
head decoding strategies under realistic traffic conditions.248

3.2. Participation 249

Over 30 teams registered, with 5 finalists achieving ranked 250
results. Participants came from academic institutions and 251
industry research labs across China, Japan, the Middle East, 252
the United States, and Europe. Most teams adopted the 253
open-source UniV2X baseline as a foundation, develop- 254
ing innovative fusion architectures and planning strategies 255
on top of it. To recognize outstanding solutions, the chal- 256
lenge organizers awarded monetary prizes to the top-ranked 257
teams in each track. The diversity in approaches—from 258
sparse query-based perception pipelines to modular plan- 259
ning frameworks—reflects the richness and complexity of 260
the V2X cooperation landscape. 261

4. Research Challenges 262

The V2X Cooperation Challenge was intentionally de- 263
signed to reflect real-world difficulties in cooperative au- 264
tonomous driving. Through analysis of participant submis- 265
sions and related work, several core research challenges 266
emerged, spanning multi-agent fusion, communication effi- 267
ciency, planning robustness, and realistic deployment mod- 268
eling. These challenges reveal both the current limitations 269
of existing solutions and promising directions for future re- 270
search. 271

Multi-Agent Sensor Fusion under Bandwidth Con- 272
straints. A fundamental challenge lies in effectively ag- 273
gregating heterogeneous sensor inputs from ego vehicles 274
and infrastructure, particularly under tight communication 275
budgets. Naı̈vely transmitting dense feature maps from 276
multiple viewpoints (e.g., bird’s-eye view or BEV) quickly 277
exhausts bandwidth and leads to latency bottlenecks [5, 44]. 278
More recent methods employ sparse query-based methods 279
and transformer for cooperative representations embedding 280
and fusion [14, 33, 51]. This necessitates the development 281
of sparse, information-aware representations that can pre- 282
serve critical scene understanding while minimizing mes- 283
sage size. 284

Top-performing teams in Track 1 adopted query-based 285
attention fusion mechanisms, such as anchor-guided sparse 286
queries and cooperative instance denoising, to mitigate 287
these issues. However, challenges remain in dynamically 288
selecting which information to transmit, how to encode un- 289
certainty from partial observations, and how to align fea- 290
tures from spatially and temporally misaligned views. Ef- 291
ficient and adaptive feature compression strategies, poten- 292
tially guided by learned importance scores, are still under- 293
explored. 294

Robust Planning in Dynamic and Complex Environ- 295
ments Track 2 highlighted the difficulty of producing re- 296
liable motion plans in highly dynamic, multi-agent urban 297
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scenes. When relying on fused perception from multiple298
sources, temporal inconsistency, latency-induced misalign-299
ment, and partial observability can significantly degrade300
planning performance [35, 49]. Ego agents must reason301
not only about static obstacles and drivable regions, but302
also about the future intentions and potential interactions303
of nearby vehicles.304

Moreover, the planning module must cope with com-305
mand diversity (e.g., turns, stops, merges) and structural306
uncertainty in intersections or occluded traffic elements.307
These issues call for more robust multi-modal trajectory308
prediction, tighter integration of intent inference, and on-309
line failure recovery mechanisms in planning architectures.310

Communication-Aware System Design and Modeling311
Realistic V2X deployment is subject to a range of network-312
ing imperfections, including packet loss [24], varying la-313
tency, and intermittent connectivity [27]. However, most314
existing cooperative driving methods assume idealized or315
fixed-delay channels [42, 46]. The challenge dataset incor-316
porates limited communication constraints (e.g., message317
size limits), but further progress depends on building sys-318
tems that are explicitly aware of and adaptive to the com-319
munication channel.320

Few teams explored bandwidth-adaptive fusion strate-321
gies or uncertainty-aware planning under degraded con-322
nectivity. Future systems can reason about when, what,323
and how to communicate, potentially leveraging learned324
policies or information-theoretic objectives. Modeling the325
trade-off between perception gain and communication cost326
remains an open research question, especially when agents327
must operate asynchronously or with partial participation.328

Generalization and Transfer under Domain Shift Al-329
though the dataset provides consistent sensor configura-330
tions, real-world deployments often involve heterogeneous331
sensor suites, diverse camera placements, and varying cal-332
ibration quality [48, 50]. Designing fusion and planning333
models that generalize across these variations remains chal-334
lenging. Furthermore, reliance on known object models or335
tightly coupled training scenarios can hinder transferability336
to new domains.337

Some participants addressed this by employing modular338
architectures with adaptable feature backbones, but the is-339
sue of domain robustness under limited supervision persists.340
Robustness to weather, lighting, and sensor degradation was341
not evaluated in this challenge but constitutes a necessary342
extension for real-world readiness.343

5. Progress and Analysis344

The competition attracted a diverse set of participants from345
academia and industry, contributing a broad spectrum of ap-346

proaches across cooperative perception, feature fusion, and 347
planning architectures. While implementations varied in 348
complexity and formulation, a number of converging trends 349
emerged. In particular, the most effective solutions reflect 350
a growing shift toward modular, interpretable, and task- 351
centric designs that emphasize structured information flow 352
between agents and system components. 353

This section introduces the top-performing solutions 354
from each track of the challenge. These methods repre- 355
sent state-of-the-art approaches in cooperative 3D percep- 356
tion and end-to-end planning with V2X input, and demon- 357
strate the effectiveness of structured representations and 358
adaptive fusion strategies. 359

5.1. Track 1 Top Method: SparseCoop (Tsinghua 360
University) 361

Wang et al. from Tsinghua University proposed SparseC- 362
oop, a fully sparse, instance-centric cooperative percep- 363
tion framework (Fig. 2) designed to simultaneously address 364
the communication and computational bottlenecks of tradi- 365
tional dense BEV-based approaches and the challenges of 366
newer sparse, query-based methods, including their insuffi- 367
ciently expressive query representations for handling real- 368
world scenarios and their inherent training instability. 369

At its core, SparseCoop introduces the concept of the 370
anchor-aided instance query, where each object is repre- 371
sented by a rich feature vector coupled with an explicit an- 372
chor box. The anchor includes structured geometric and 373
motion attributes—namely the object’s 3D position, dimen- 374
sions, velocity, and yaw. This representation enables pre- 375
cise, physically grounded fusion across agents with differ- 376
ent viewpoints and asynchronous observations. 377

To address the training instability common in sparse 378
query systems, SparseCoop incorporates a cooperative in- 379
stance denoising task. During training, noise is deliberately 380
added to ground-truth objects in the form of ”Observation 381
Noise” and ”Transformation Noise”. The model is then su- 382
pervised to recover clean object states, which generates a ro- 383
bust and abundant stream of positive training signals. This 384
design improves convergence speed and accuracy. 385

SparseCoop achieves state-of-the-art detection and 386
tracking performance, demonstrating strong robustness to 387
viewpoint diversity, temporal misalignment, and perception 388
noise under the V2X-Seq-SPD benchmark. 389

5.2. Track 2 Top Method: MAP (Tongji University) 390

The MAP framework (Fig. 3), proposed by Kan et al. 391
from Tongji University, emerged from a critical reevalu- 392
ation of the role of perception in end-to-end autonomous 393
driving. While many recent approaches favor minimal in- 394
put paradigms that rely solely on ego history, MAP chal- 395
lenges this trend by demonstrating that explicitly and effec- 396
tively utilizing semantic map information can substantially 397
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Figure 2. Architecture of SparseCoop, the top-ranked solution in Track 1: Cooperative Temporal Perception. The method adopts a
fully sparse cooperative detection and tracking pipeline, where each object is represented by an anchor-aided instance query containing
structured geometric attributes (position, size, velocity, orientation) and semantic features. Cross-agent fusion is performed directly at the
object level without relying on intermediate BEV features. A cooperative instance denoising task is applied during training to inject noise
into ground-truth anchors and improve convergence robustness through reconstruction supervision.

enhance planning robustness.398

At its core, MAP transforms semantic segmentation399
from a passive supervision target into a direct planning in-400
put. It introduces a two-branch query generation pipeline:401
The Ego-status-guided Planning (EP) module leverages the402
current ego state for trajectory planning, while the other ex-403
tracts map-guided priors through a Plan-enhancing Online404
Mapping (POM) module. The resulting semantic-aware405
and ego-status-driven queries are then fused via a learned406
Weight Adapter, which adaptively predicts a fusion scalar407
α based on the current driving context.408

This adaptive weighting mechanism allows the planner409
to rely more on ego information in simple scenes, and to410
prioritize semantic priors in complex or ambiguous sce-411
narios, leading to context-sensitive and reliable decision-412
making. Importantly, MAP achieves strong performance413
without stacked modules such as tracking or occupancy pre-414
diction.415

On the DAIR-V2X-Seq-SPD benchmark, MAP im-416
proves the overall normalized score by 44.5% over the417
UniV2X baseline and ranks first on the planning leader-418
board, showing competitive results across all sub-metrics,419
including L2 error and off-road rate.420

6. Future Directions421

The challenge results and observed limitations across both422
tracks highlight several key directions for advancing the423
field of cooperative autonomous driving under V2X set-424
tings. To bridge the gap between benchmark success and425
real-world deployment, future research should address the426
following critical aspects:427

6.1. Realistic V2X Communication Modeling 428

Most current solutions assume ideal or simplified com- 429
munication channels, with constant message delivery and 430
no packet loss. However, real-world V2X systems of- 431
ten operate under non-deterministic network conditions, in- 432
cluding variable latency, intermittent connectivity, and data 433
dropouts due to interference or congestion. Future bench- 434
marks and algorithms should incorporate communication- 435
aware learning by simulating: 436

• Packet loss models based on empirical wireless studies, 437
• Delay-aware fusion mechanisms, where agents reason 438

with stale or missing messages, 439
• Redundancy-aware protocols, that prioritize critical infor- 440

mation under constraints. 441

This would enable the design of robust agents that adapt 442
their behavior not only based on perceptual uncertainty, but 443
also on the reliability of the communication channel. 444

6.2. Bandwidth-Adaptive and Task-Aware Fusion 445

While sparse fusion strategies showed promise in this chal- 446
lenge, a crucial open question is how to dynamically adjust 447
fusion strategies based on both bandwidth availability and 448
task requirements. Future systems may benefit from: 449

• Information-theoretic fusion policies, which select fea- 450
tures with maximal utility for the downstream task, 451

• Hierarchical encoding schemes, allowing agents to trans- 452
mit coarse-to-fine updates depending on the link condi- 453
tion, 454

• Task-specific prioritization, where planning-critical cues 455
(e.g., dynamic agents near intersections) are communi- 456
cated more aggressively than static context. 457

These adaptive fusion mechanisms would support grace- 458
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Figure 3. Architecture of MAP, the top-ranked solution in Track 2: Cooperative End-to-End Planning. This planning-centric framework
explicitly incorporates semantic map information into trajectory generation. It consists of two query-generation branches: the Plan-
enhancing Online Mapping (POM) module extracts semantic priors from segmentation outputs, while the Ego-status-guided Planning
(EP) module models motion dynamics. A learned adapter fuses the two planning queries with weights conditioned on ego state, enabling
context-aware trajectory generation under varying traffic complexity.

ful degradation and efficient resource utilization in large-459
scale V2X deployments.460

6.3. Generalization Across Heterogeneous Agents461
and Scenarios462

Real-world autonomous systems will inevitably involve het-463
erogeneous participants, including vehicles and infrastruc-464
ture units with varying sensor types, fields of view, and465
computing capabilities. Robust fusion and planning un-466
der such heterogeneous conditions remain largely unsolved.467
Future research should explore:468
• Calibration-agnostic fusion frameworks, resilient to par-469

tial or inaccurate sensor alignment,470
• Meta-learning or domain adaptation techniques, to gener-471

alize across sensor configurations, cities, and deployment472
environments,473

• Scalable fusion topologies, that support dynamic partici-474
pation (e.g., vehicles entering/leaving the scene).475
Addressing this challenge will significantly improve the476

deployability of cooperative driving systems across differ-477
ent geographies and manufacturers.478

6.4. Interpretability, Safety, and Standardization479

For cooperative systems to be adopted in safety-critical ap-480
plications such as autonomous driving, interpretability and481
verifiability become essential. Future work should focus on:482
• Transparent fusion architectures, that expose which483

agents and observations contributed to decisions,484

• Uncertainty quantification in cooperative predictions and 485
plans, 486

• Conformance to communication and safety standards, 487
such as SAE J2735 or ETSI ITS-G5. 488

Moreover, establishing open benchmarks and evaluation 489
protocols for interpretability and fault tolerance will further 490
accelerate research translation into practice. 491

6.5. Community Building and Ecosystem Develop- 492
ment 493

The field of V2X cooperative driving remains fragmented 494
across perception, networking, and control communities. 495
To build a coherent and impactful research direction, we 496
encourage: 497

• Continued development of open-source toolkits, such as 498
UniV2X, that support full-stack experimentation, 499

• Expansion of datasets to include adverse conditions (e.g., 500
night, rain, sensor failure), 501

• Organization of long-term multi-institutional bench- 502
marks, fostering reproducibility, collaboration, and 503
community-wide progress. 504

• Increased support for V2X-specific challenges and com- 505
petitions, as most existing benchmarks (see Table 1) re- 506
main focused on single-agent autonomy. 507

Through sustained infrastructure and shared challenge 508
platforms, we can drive the maturation of V2X research 509
from academic prototypes to robust, real-world systems. 510
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7. Conclusion511

This paper presented a comprehensive overview of the512
End-to-End Autonomous Driving through V2X Coopera-513
tion Challenge, held as part of the MEIS Workshop @514
CVPR 2025. The challenge was designed to advance the515
state of cooperative autonomous driving by evaluating per-516
ception and planning systems under realistic multi-agent517
and communication-constrained conditions. It comprised518
two tracks—cooperative temporal perception and end-to-519
end planning—built on the open-source UniV2X frame-520
work and the V2X-Seq-SPD dataset.521

Through participation from over 30 teams worldwide,522
the challenge revealed both significant progress and criti-523
cal bottlenecks in V2X-enabled driving systems. Top so-524
lutions leveraged sparse, query-based fusion, modular ar-525
chitectures, and temporal reasoning to achieve strong re-526
sults in both perception and planning. At the same time,527
key research challenges were identified in areas such as528
communication-aware fusion, robust planning under partial529
observability, and heterogeneous agent generalization.530

The insights from this challenge underscore the impor-531
tance of designing V2X systems that are not only accu-532
rate and efficient, but also adaptive, interpretable, and de-533
ployable under real-world constraints. By promoting open534
benchmarks, reproducible baselines, and community col-535
laboration, this initiative aims to bridge the gap between536
academic research and practical deployment of cooperative537
autonomous driving technologies.538

Future editions of the challenge will expand in scope539
and complexity, incorporating richer sensor setups, more540
realistic communication models, and diversified driving541
scenarios. We invite the broader research community542
to join in this effort to build safe, scalable, and intelli-543
gent multi-agent driving systems for the cities of tomor-544
row.545
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