
ICCV
#15

ICCV
#15

ICCV 2025 Submission #15. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

MIC-BEV: Infrastructure-Based Multi-Camera Bird’s-Eye-View
Perception Transformer for 3D Object Detection

Anonymous ICCV submission

Paper ID 15

Abstract

Infrastructure-based perception plays a pivotal role in001
intelligent transportation systems by providing global002
situational awareness and enabling cooperative au-003
tonomy. However, existing models struggle with the004
challenges of infrastructure settings, including di-005
verse camera poses and configurations, significant006
perspective variation from wide-baseline viewpoints,007
and practical issues such as sensor degradation. To008
address these limitations, we introduce MIC-BEV,009
a Transformer-based Bird’s-Eye-View (BEV) percep-010
tion model for multi-camera infrastructure environ-011
ments. MIC-BEV supports a variable number of cam-012
era inputs and includes a graph-based feature fusion013
module that captures geometric relationships between014
cameras. It also features a BEV semantic map pre-015
diction head to enhance scene understanding. To im-016
prove robustness, MIC-BEV is trained with random017
camera masking and Gaussian blur, simulating par-018
tial sensor failure and degraded image quality. Fur-019
thermore, we present the M2I dataset, a new bench-020
mark on multi-view infrastructure perception featur-021
ing diverse infrastructure configurations and road ge-022
ometries. Experiments on M2I demonstrate that MIC-023
BEV consistently outperforms existing state-of-the-art024
methods in infrastructure-based 3D object detection.025
It also maintains robustness under simulated sensor026
failures, demonstrating strong performance even in027
challenging test conditions.028

1. Introduction029

Infrastructure-based perception is a key enabler for030
intelligent transportation systems, providing critical031
support for traffic monitoring [1, 52, 57], situational032
awareness [8, 12, 61], and cooperative autonomy033
[29, 36, 53] in urban environments. Sensors deployed034
at intersections, crosswalks, and merging zones of-035
fer a strategic advantage for observing traffic partici-036
pants from elevated viewpoints, providing broader and037
more stable observations. This spatial advantage fa-038
cilitates long-term monitoring and enhances the abil-039
ity to detect dynamic objects [3, 49, 55]. While Li-040
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Figure 1. Representative scenarios illustrating various
infrastructure-mounted camera layouts at intersections.
Each setup overlays one to four infrastructure-mounted cam-
eras onto a predefined BEV perception grid. In MIC-BEV,
a relation-enhanced spatial cross-attention module employs
GNN to assign geometry-aware, per-view fusion weights to
each camera based on camera node features and spatial edge
relations for each BEV cell. Beyond 3D object detection,
MIC-BEV predicts semantic maps, labeling each BEV cell
with classes such as driving lane, parking area, sidewalk, or
background. Note: The grid size shown is not to scale and
is intended for illustrative purposes only.

DAR has been widely adopted for infrastructure-based 041
object detection due to its accurate 3D measurements 042
[36, 42], it remains costly, maintenance-intensive, and 043
sensitive to mounting constraints [10, 30]. For in- 044
stance, mounting LiDAR at higher positions reduces 045
sensing resolution near the ground, while lower place- 046
ments increase vulnerability to occlusion and physical 047
damage [18, 20]. In contrast, cameras are significantly 048
more affordable, scalable, and easier to deploy, mak- 049
ing them an attractive alternative for large-scale infras- 050
tructure sensing [4, 21]. 051

While single-camera infrastructure perception sys- 052
tems are easier to deploy and have been widely ex- 053
plored in prior work [34, 44, 45], they suffer from 054
limited spatial coverage and decreased robustness un- 055
der occlusion or in complex scenes. In contrast, multi- 056
camera infrastructure sensing offers significant advan- 057
tages by aggregating visual information from multiple 058
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viewpoints, leading to improved object coverage and059
scene understanding [11, 40]. However, multi-camera060
systems also introduce several critical challenges. 1)061
High variability in camera poses and configura-062
tions. Unlike vehicle-mounted sensors that follow063
consistent mounting patterns, infrastructure cameras064
are deployed with diverse poses, orientations, fields of065
view, spatial layouts, and quantities. Each intersection066
has a distinct design, requiring models to adapt to a067
wide range of installation geometries and camera con-068
figurations. 2) Wide-baseline viewpoints. Cameras069
deployed at large spatial distances often have over-070
lapping fields of view with significant perspective dif-071
ferences and occlusions. These wide-baseline condi-072
tions make spatial alignment and feature fusion across073
views challenging. 3) Sensor reliability and robust-074
ness. Infrastructure cameras may degrade over time075
or fail without immediate detection or repair. Hence,076
perception models must be resilient to missing or low-077
quality inputs during deployment.078

To address these challenges, we propose MIC-079
BEV, a robust and effective 3D object detection model080
designed for infrastructure-based multi-camera sys-081
tems using a Bird’s-Eye-View (BEV) representation.082
MIC-BEV extends BEVFormer [25] by incorporat-083
ing a relation-enhanced spatial cross-attention mech-084
anism that fuses multi-view features through camera-085
specific features and their geometric relations for each086
BEV cell using a graph neural network (GNN). This087
enables adaptation to diverse camera and road lay-088
outs, as illustrated in Fig. 1. We utilize random cam-089
era view dropout or corruption during model train-090
ing, enhancing robustness to camera failure at infer-091
ence time. To support training and evaluation, we in-092
troduce M2I, a large-scale dataset for Multi-camera,093
Multi-configuration Infrastructure perception. M2I094
features diverse traffic scenarios in simulated environ-095
ments, encompassing variations in the quantity, posi-096
tion, orientation, and field-of-view of cameras. It of-097
fers a challenging benchmark across realistic deploy-098
ment settings. The main contributions of this paper099
are summarized as follows:100

1. We propose MIC-BEV, a robust 3D detection101
model for infrastructure-based multi-camera per-102
ception that effectively fuses multi-view observa-103
tions using spatial cross-attention enhanced with104
graph-based relation modeling.105

2. We present M2I, a new dataset featuring diverse106
and realistic multi-camera settings and infrastruc-107
ture configurations, enabling model training and108
evaluation of generalization and robustness.109

3. We demonstrate that MIC-BEVFormer achieves110
strong performance and robustness on M2I, val-111
idating its effectiveness under varying camera112
placements, road layouts, and sensor degradation.113

2. Related Work 114

2.1. Camera-based BEV Perception 115

Bird’s-eye-view (BEV) representations have become 116
a dominant paradigm in camera-based 3D percep- 117
tion, offering a unified spatial abstraction across multi- 118
view inputs. Early works such as OFT [33] and 119
CADDN [54] project monocular camera image fea- 120
tures into BEV space for 3D object detection. Lift- 121
Splat-Shoot [32] extends this by lifting multi-view 122
image features into a 3D voxel space using pre- 123
dicted depth and splatting them into a dense BEV 124
plane. BEVDet [16] optimizes this process for multi- 125
view efficiency. Transformer-based methods fur- 126
ther advance BEV detection. DETR3D [39] and 127
PETR [27] avoid explicit depth estimation by leverag- 128
ing object queries and 3D reference points for cross- 129
view feature aggregation, inspired by DETR [7] and 130
Deformable DETR [58]. They introduce 3D ref- 131
erence points to guide multi-view feature aggrega- 132
tion via cross-attention. BEVFormer [25] introduces 133
a learnable BEV query grid and applies spatiotem- 134
poral deformable attention for dense BEV fusion. 135
BEVDet4D [15] and PETRv2 [28] incorporate tem- 136
poral cues to enhance consistency and performance. 137
Despite their success in vehicle-mounted applications, 138
most BEV methods assume static, full observability 139
with fixed camera configurations, which do not hold 140
in infrastructure-mounted applications. This moti- 141
vates the development of BEV perception models for 142
infrastructure-centric environments. 143

2.2. Infrastructure-based 3D Perception 144

Infrastructure-based perception systems often rely on 145
LiDAR [31, 47, 60, 62] or LiDAR-camera fusion for 146
3D object detection [2, 23, 51, 61]. However, due 147
to the high deployment cost of LiDAR [6, 14, 26], 148
camera-only approaches are gaining growing inter- 149
est. Early efforts focused on monocular 3D detec- 150
tion using datasets such as Rope3D [48] and DAIR- 151
V2X [50]. Methods like BEVDepth [24] improve 152
depth estimation through LiDAR supervision, while 153
BEVHeight [44], BEVHeight++ [46], and CoBEV 154
[34] enhance spatial understanding by leveraging 155
depth-height cues. More recently, MonoUNI [19] 156
introduces normalized depth features to reduce re- 157
liance on explicit height cues, achieving better gen- 158
eralization from infrastructure to vehicle perspectives. 159
While monocular setups have shown promise, multi- 160
camera configurations offer broader spatial coverage 161
and more robust performance. RCooper [13] focuses 162
on multi-camera perception in a four-way intersection 163
and corridors, while RoScenes [59] covers long-range 164
highway scenes. RoBEV [59] and RopeBEV [17] es- 165
tablish strong baselines by fusing multi-view features 166
using feature-guided queries and rotation-aware em- 167
beddings, respectively. However, these fusion strate- 168
gies are largely implicit and lack interpretability at the 169
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Figure 2. Overview of the MIC-BEV architecture. The framework takes multi-view images from a variable number of
infrastructure-mounted cameras as input and extracts features through a shared backbone. A camera masking module applies
random dropout or Gaussian noise to simulate degraded views. The extracted features are fused into a BEV representation
via Transformer layers with the proposed Relation-Enhanced Spatial Cross-Attention. GAT networks are used to dynamically
assign view-dependent weights based on camera node features and geometric relations between the camera and its visible BEV
cells. The resulting BEV features are used for both object detection and map prediction tasks.

per-view level. Furthermore, the limited scene diver-170
sity in these datasets hampers generalization to more171
complex layouts. To address these limitations, we in-172
troduce the M2I dataset, which encompasses a wide173
variety of intersection types and infrastructure config-174
urations. We propose MIC-BEV, which integrates a175
GNN to dynamically infer geometry-aware, per-view176
fusion weights. This design enables robust and inter-177
pretable multi-view fusion, offering adaptability to di-178
verse layouts and situations.179

3. Method180

In this section, we present MIC-BEV, a Transformer-181
based framework for 3D object detection and semantic182
map prediction from infrastructure-mounted cameras.183
We first outline the problem statement and our overall184
architecture, then we present our model in detail.185

3.1. Problem Definition186

The objective is to develop a multi-camera 3D ob-187
ject detection model for infrastructure-mounted sen-188
sors, enhanced by semantic map prediction as an aux-189
iliary task. The auxiliary supervision facilitates spatial190
reasoning and improves detection robustness.191

Given a set of synchronized multi-view RGB im-192
ages, the model Det(·) jointly predicts a set of 3D193
bounding boxes B̂ and a BEV semantic map M̂ :194

B̂, M̂ = Det({In}Nn=1, {En}Nn=1, {Kn}Nn=1 | ϕ),
(1)195

where In ∈ RH×W×3 is the RGB image from the196
n-th camera, En ∈ R3×4 and Kn ∈ R3×3 are the197
corresponding extrinsic and intrinsic matrices, and ϕ198
denotes the learnable parameters of the model. The199
quantity of cameras N varies across different scenes.200

The primary task is 3D object detection, which is 201
predicting a set of bounding boxes B̂ in a shared BEV 202
coordinate frame, where each box B̂i is parameterized 203
as B̂i = (x, y, z, l, w, h, ψ), representing the object’s 204
position, dimensions, and yaw orientation. To support 205
spatial understanding, we introduce semantic map pre- 206
diction as an auxiliary objective. The model predicts 207
a BEV semantic map M̂ ∈ RNclass×Hbev×Wbev , where 208
Nclass is the number of semantic classes (e.g., back- 209
ground, driving, crosswalk). Each grid cell (u, v) con- 210
tains a per-class probability distribution M̂:,u,v . 211

3.2. Overall Architecture 212

Our framework builds upon BEVFormer [25], ex- 213
tending its capabilities to accommodate infrastructure- 214
mounted camera setups with varying road layouts. As 215
shown in Fig. 2, the model comprises four compo- 216
nents : (1) an image encoder for feature extraction, 217
(2) a BEV feature generator that lifts and aggregates 218
image features into a unified top-down space, where a 219
relation-enhanced spatial attention module is embed- 220
ded within each Transformer layer to fuse multi-view 221
features, and (3) task-specific decoding heads for 3D 222
object detection and semantic map prediction. 223

3.3. Variable Multi-Camera Inputs 224

Infrastructure deployments often require a different 225
quantity of infrastructure-mounted cameras with vary- 226
ing fields of view. To ensure adaptability, our frame- 227
work supports a variable number of input cameras. If 228
fewer than the maximum number (Nmax) are avail- 229
able, we pad the input with dummy images (zero- 230
valued tensors) and assign identity matrices as their 231
calibration parameters. These padded views are ex- 232
cluded from downstream spatial attention and graph 233
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computations by ensuring their 3D projections yield234
non-positive depths, preventing them from contribut-235
ing to the set of effective views Vhit (see Sec. 3.5).236

To improve robustness, we apply random view237
masking and noise injection during training. With a238
probability of pmask = 0.1, one randomly selected239
camera view is either replaced with a dummy ten-240
sor or corrupted using Gaussian blur, simulating sen-241
sor degradation or camera dropout. This augmenta-242
tion strategy encourages the model to maintain per-243
formance under partial observability. No masking or244
noise is applied when only a single view is present.245

3.4. Encoder and BEV Queries246

We adopt a ResNet backbone coupled with a Feature247
Pyramid Network (FPN) to extract multi-scale fea-248
tures from each camera image. The BEV representa-249
tion is defined as a 2D grid anchored to the ground250
plane and centered at the scene. Following BEV-251
Former [25], we initialize a learnable tensor Q ∈252
RHbev×Wbev×C to represent the grid, where Hbev and253
Wbev denote the spatial resolution, and C is the fea-254
ture dimension. Each cell Qp ∈ RC serves as a la-255
tent query corresponding to a spatial location p in the256
BEV space. These BEV queries interact with multi-257
view image features via spatial cross-attention and are258
iteratively refined to capture spatial cues encoded by259
the infrastructure-mounted cameras.260

3.5. Relation-Enhanced Transformer261

Spatial Cross-Attention (SCA). Given a set of262
multi-view camera feature maps {F (n)}Nn=1, SCA ag-263
gregates them into a unified BEV representation F ∈264
RC×Hbev×Wbev . For each BEV query Qp located at265
(x, y) in the BEV grid, we generate a vertical stack266
of Nref 3D reference points rp,j = (x, y, zj) using267

a predefined set of anchor heights {zj}Nref
j=1. These268

pillars help capture semantic features across different269
heights. Each 3D reference point rp,j is projected onto270

the n-th camera view as 2D coordinates u
(n)
p,j . Only271

camera views where the projected points fall within272
valid image bounds are included in the hit-view set273
Vhit ⊆ 1, . . . , N .274

For each hit view n ∈ Vhit, we apply deformable275
attention (DeformAttn) [58] around the projected lo-276

cations {u(n)
p,j }

Nref
j=1 of 3D reference points associated277

with BEV queryQp. This produces a per-view feature278

f
(n)
p ∈ RC . The final BEV feature is computed by279

fusing all visible views with learned weights ωp,n:280

SCA(Qp) =
∑
n∈Vhit

ωp,n · f (n)p ,
∑
n

ωp,n = 1,

f (n)p =

Nref∑
j=1

DeformAttn(Qp, u
(n)
p,j , F

(n)
t ).

(2)281

Relation-Enhanced Fusion via GAT. The conven-282
tional way of uniformly averaging the camera contri-283

butions ignores how informative or reliable each view 284
is for a specific BEV cell. To address this limitation, 285
we learn the fusion weights ωp,n in Eq. (2) using a 286
graph attention network (GAT) [38]. 287

We construct a bipartite graph G = (Vcam,Vbev, E), 288
where each camera node Cn ∈ Vcam represents a 289
pooled image feature map from camera n, and each 290
BEV grid cell node Qp ∈ Vbev is represented by a 291
BEV query located at p. The node features are defined 292
as: 293

hp = Qp ∈ RC for BEV nodes, (3) 294
295

hn =
1

K

K∑
k=1

f
(t)
n,k ∈ RC for camera nodes, (4) 296

where K = H × W is the number of tokens from 297
the camera feature map Fn ∈ RC×H×W , with H and 298
W denoting the height and width of the feature map, 299

respectively. f (t)n,k denotes the k-th token feature from 300
camera n. 301

Edges E are directed from cameras to visible BEV 302
nodes, E = {(n, p) | Qp is visible from camera Cn}. 303
Each edge (n → p) is annotated with a geometry- 304
aware descriptor gp,n ∈ R8, consisting of: 305

gp,n =
[
∆xn

R , ∆yn

R , zn
H , |∆x|2

R
√
2
,

cos δp,n, sin δp,n, sinϕn, cosϕn

]
,

(5) 306

where (∆xn,∆yn) = (xp−xn, yp−yn) is the 2D pla- 307
nar offset between the BEV grid and the camera cen- 308
ter. R is a normalization constant corresponding to the 309
sensing range, used to scale spatial offsets to a consis- 310
tent range within [−1, 1]. Similarly, zn is the camera’s 311
height, normalized by the maximum camera heightH . 312
δp,n is the heading difference between the camera’s 313
yaw and the angle from camera n to the BEV cell at 314
location p, and ϕn is the pitch angle of camera n. To 315
ensure rotational continuity and avoid discontinuities 316
near±π, we use heading with its sine and cosine com- 317
ponents, i.e., cos δp,n and sin δp,n. By jointly normal- 318
izing geometric features, we ensure that the network is 319
invariant to map scale, BEV resolution, and elevation 320
difference, enabling generalization across scenes with 321
different layouts or camera setups. 322

We employ a GAT network fθ to process the BEV 323
node, camera node, and their geometric relation: 324

sp,n = fθ(hp,hn,gp,n), (6) 325

where sp,n denotes the raw importance score for the 326
camera node n contributing to the BEV node p. For 327
views not in the visible set, we enforce sp,n ← −∞ 328
to exclude them. The fusion weights are computed via 329
the softmax function: 330

ωp,n =
exp(sp,n)∑

m∈Vcam
exp(sp,m)

. (7) 331

This geometry- and content-aware fusion strat- 332
egy enables the model to selectively emphasize the 333
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most informative and geometrically favorable camera334
views, while suppressing occluded or degraded inputs.335
As a result, the fused BEV representation becomes336
more robust, interpretable, and reliable across a wide337
range of camera configurations.338

BEV Transformer Layer. Each BEV Transformer339
layer integrates a relation-enhanced spatial cross-340
attention module to fuse multi-view image features341
into the BEV space in a geometry- and content-aware342
manner. This is followed by standard residual con-343
nections and layer normalization. A total of six such344
Transformer layers are stacked, allowing the model to345
progressively refine the BEV feature.346

3.6. Object Detection and Map Prediction347

The BEV Transformer layers output a BEV feature348
map F ∈ RC×Hbev×Wbev , which serves as a shared349
representation for both object detection and semantic350
map prediction. This design enables joint optimiza-351
tion, where supervision from one task can benefit the352
other by improving shared features.353

For object detection, we adopt a DETR-style de-354
coder [7] with Nq = 200 object queries. Each query355
outputs a class probability vector ŷ ∈ Rnobj+1 and356
bounding box attributes b̂ = (x, y, z, l, w, h, ψ). We357
use Hungarian matching to assign predictions to the358
ground truth. The detection loss combines a focal359
classification loss Lcls and an L1 regression loss Lreg:360

Ldet = Lcls + Lreg. (8)361

For semantic map prediction, we apply a decoder362
composed of Conv-GN-ReLU blocks, followed by a363
1 × 1 convolutional classifier, which transforms the364
BEV feature map F into dense semantic logits M̂ ∈365
RCmap×Hbev×Wbev . The map prediction loss is defined366
as pixel-wise cross-entropy:367

Lseg =
1

HW

∑
u,v

CE(M̂:u,v,M
∗
:u,v). (9)368

The model is trained with a combined loss:369

L = Ldet + λLseg, (10)370

where λ is the task balance weight.371
Joint training with a map segmentation head en-372

hances detection performance in several ways. First,373
map prediction encourages the BEV feature map F to374
capture geometry priors (e.g., road boundaries, side-375
walks, parking zones), allowing object queries to fo-376
cus on semantically meaningful regions and reducing377
false positives in background areas. Second, dense su-378
pervision across the entire BEV grid enhances the con-379
trast between foreground and background, leading to380
more accurate bounding box localization. Finally, in381
cases of partial occlusion, semantic context from the382
map (e.g., road type or crosswalk borders) provides383
cues that help recover missing object evidence.384

4. Experiments 385

4.1. Datasets 386

Most existing infrastructure-based perception datasets 387
are limited in scope, typically capturing a single in- 388
tersection or highway segments with uniform and 389
constrained camera setups. In many cases, cameras 390
are co-located on a single pole, resembling vehicle- 391
mounted configurations [13, 23, 43]. Such arrange- 392
ments often introduce blind spots below the pole [56] 393
and fail to reflect the challenges of real-world de- 394
ployments with varied spatial layouts. Furthermore, 395
the quantity of cameras required for sufficient cov- 396
erage varies significantly across different intersection 397
geometries, rendering fixed configurations impractical 398
for large-scale or cost-sensitive deployments. 399

To overcome these limitations, we introduce 400
the Multi-camera, Multi-configuration Infrastructure 401
(M2I) Perception Dataset. M2I is the first benchmark 402
designed for 3D perception in diverse roadside envi- 403
ronments with variable and realistic camera configura- 404
tions. Built using the high-fidelity CARLA simulator 405
[9], M2I spans 29 distinct environments across 7 dif- 406
ferent towns. It includes not only conventional inter- 407
sections but also complex roadside areas such as blind 408
zones near sharp turns, gas stations, and occlusion- 409
heavy regions. Each scene is equipped with 1 to 4 410
cameras sampled from 8 diverse configurations, vary- 411
ing in position, orientation, and field of view (ranging 412
from 100° to 120°) [37, 42]. Camera placements are 413
manually curated to reflect real-world deployments, 414
including those from V2X-Real [42], RoScense [59], 415
Rcooper [13], and layouts specific to complex road 416
types like T-junctions and 5-way intersections. 417

M2I contains over 610,000 images and 200,000 an- 418
notated frames, each with synchronized LiDAR, 3D 419
bounding boxes, and semantic BEV maps. To model 420
diverse traffic scenarios, we simulate three levels of 421
traffic density (low, medium, and high) across se- 422
quences of 200-300 frames each. On average, each 423
frame includes around 40 dynamic agents compris- 424
ing cars, pedestrians, trucks, and cyclists. The dataset 425
reflects realistic agent distribution, with an average 426
composition of 65% cars, 20% trucks, 10% pedes- 427
trians, and 5% cyclists, closely aligned with statis- 428
tics from established benchmarks such as nuScenes 429
and Waymo [5, 35]. The dataset contains 844 sce- 430
nario clips and is partitioned into training, valida- 431
tion, and test sets using a 7:1:2 ratio. In addition to 432
object-level annotations, M2I provides semantic BEV 433
maps for fine-grained scene understanding. These 434
maps include seven semantic classes: background, 435
driving, sidewalk, crosswalk, shoulder, 436
border, and parking. These annotations support 437
multiple tasks, including 3D detection, semantic seg- 438
mentation, tracking, and temporal modeling. 439

Tab. 1 compares infrastructure-based and V2X per- 440
ception datasets in terms of scale, camera configu- 441
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Table 1. Comparison of Infrastructure Components in V2X and Infrastructure-Based datasets. Previous simulation datasets
adopt fixed, centered, vehicle-style camera placements for infrastructure, which limit spatial diversity. In contrast, our M2I
dataset introduces 10 diverse camera configurations across a wide range of roadside environments. It supports varied FOV
settings and scene types, enabling more robust and generalizable benchmarking for infrastructure-based 3D perception.

Dataset Type Year Frames Boxs # Cams FoV Map Environment

V2X-Sim-I [23] Sim 2022 60K 26.6K 4 (fixed layout) Constant Urban
V2XSet-I [43] Sim 2022 44K 233K 4 (fixed layout) Constant Urban
DAIR-V2X-I [50] Real 2022 10K 493K 1 Constant Intersection
V2X-Real-I [41] Real 2023 171K 1.2M 4 (fixed layout) Constant Intersection
V2X-Seq-I [41] Real 2023 39K 464K 2 (fixed layout) Constant ✓ Intersection
V2XPnP-Seq-I [57] Real 2024 208K 1.45M 4 (fixed layout) Constant ✓ Intersection
Rope3D [48] Real 2022 50K 1.5M 1 Constant Intersection
RCooper [13] Real 2024 50K 242K 2–4 Constant Intersection
RoScenes [59] Real 2024 215K 21.13M 6–12 Varied Highway

M2I Sim 2025 610k 7M 1–4 (10 layout) Varied ✓ Diverse

ration, field-of-view, map support, and scene diver-442
sity. Existing datasets often rely on fixed, limited cam-443
era layouts and are focused primarily on intersection444
scenes. In contrast, our proposed M2I dataset intro-445
duces 10 diverse camera configurations with varied446
FoVs across a wide range of simulated roadside en-447
vironments. It provides 610k frames and 7 million an-448
notated 3D boxes, along with detailed map data, mak-449
ing it one of the largest and most versatile datasets for450
infrastructure-based 3D perception.451

4.2. Implementation Details452

All models use a ResNet-101 backbone with de-453
formable convolutions (ResNet101-DCN) as the im-454
age encoder, followed by an FPN producing feature455
maps at four scales: 1/16, 1/32, 1/64, and 1/128, each456
with an embedding dimension of 256. We train for457
10 epochs and evaluate on the validation set after each458
epoch, selecting the checkpoint with the highest mAP.459
For our model, we use 3 layers with 4 attention heads460
per layer in GAT in spatial cross-attention, and the461
hidden dimension is 128. The map prediction head462
consists of four Conv-GN-ReLU blocks, and the bal-463
ance weight λ in the loss function is set to 2.0. The464
object detection head is a DETR-style decoder with465
six Transformer layers.466

The BEV grid is configured as 200 × 200 with467
a resolution of 0.512m per cell, covering a percep-468
tion area of [−51.2m, 51.2m] along both the X and469
Y axes. All models are trained for 10 epochs using 4470
NVIDIA L40S GPUs with a batch size of 2 per GPU.471
We employ the AdamW optimizer with a learning rate472
of 2 × 10−4, weight decay of 0.01, and a cosine an-473
nealing learning rate schedule. Input images have a474
resolution of 800×600, and standard multi-view pho-475
tometric augmentations are applied during training.476
All models are trained to detect 4 object categories:477
pedestrian, car, cyclist, and truck, using consistent an-478

notations across all baselines. 479

4.3. Evaluation Metrics and Baselines 480

We evaluate 3D object detection performance us- 481
ing two standard metrics: mean Average Precision 482
(mAP) and nuScenes Detection Score (NDS) [5]. The 483
mAP metric measures detection accuracy across mul- 484
tiple object classes and distance thresholds. Un- 485
like conventional AP that uses fixed Intersection-over- 486
Union (IoU) thresholds, the nuScenes benchmark de- 487
fines true positives based on center distance thresh- 488
olds (e.g., 0.5m, 1.0m, 2.0m, and 4.0m), which better 489
accounts for annotation uncertainty in LiDAR-based 490
datasets. mAP is computed as the average over all 491
class-distance pairs: 492

mAP =
1

|C| · |D|
∑
c∈C

∑
d∈D

APc,d, (11) 493

where C is the set of object classes, D is the set of 494
distance thresholds, and APc,d is the average precision 495
for class c at distance threshold d. 496

NDS is a composite score that integrates mAP with 497
five True Positive metrics: mean Average Translation 498
Error (mATE), mean Average Scale Error (mASE), 499
mean Average Orientation Error (mAOE), mean Av- 500
erage Velocity Error (mAVE), and mean Average At- 501
tribute Error (mAAE). It provides a balanced evalua- 502
tion of detection accuracy and localization fidelity: 503

NDS =
1

10

[
5 · mAP +

∑
mTP

(1−min(1,mTP))

]
, (12) 504

where mTP ∈ {mATE,mASE,mAOE,mAVE,mAAE}. 505
We compare our method against state-of-the-art 506

BEV-based models, including Lift-Splat-Shoot (LSS) 507
[32], BEVFormer [25], DETR3D [39], PETR [27], 508
and UVTR [22]. These models vary in camera con- 509
figurations, feature lifting strategies, and types of su- 510
pervision, offering a comprehensive benchmark for 511
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Table 2. Performance comparison of BEV-based perception models on the M2I testing set.

Method
Normal Robust

mAP ↑ NDS ↑ mATE ↓ mASE ↓ mAOE ↓ mAP ↑ NDS ↑ mATE ↓ mASE ↓ mAOE ↓

LSS [32] 0.446 0.407 0.742 0.489 0.194 0.336 0.337 0.781 0.510 0.224
DETR3D [39] 0.601 0.453 0.685 0.615 0.624 0.461 0.371 0.701 0.620 0.638
PETR [27] 0.652 0.623 0.310 0.118 0.129 0.523 0.545 0.340 0.134 0.148
BEVFormer [25] 0.691 0.676 0.211 0.094 0.084 0.581 0.596 0.241 0.109 0.107
UVTR [22] 0.723 0.701 0.201 0.061 0.054 0.558 0.603 0.220 0.061 0.054
MIC-BEV 0.767 0.726 0.179 0.062 0.058 0.647 0.654 0.215 0.071 0.067
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Figure 3. Qualitative comparison of MIC-BEV with baseline models (LSS and BEVFormer) across three intersections. MIC-
BEV produces more accurate detections with fewer false negatives and false positives, especially in occluded or sparsely
covered regions, by leveraging relation-aware multi-view fusion. In Intersection 2, a pedestrian partially occluded in one
camera view is missed by BEVFormer but correctly detected by MIC-BEV.

infrastructure-based 3D perception. To ensure fair512
comparison under varying quantities of cameras, we513
introduced the same padding mechanism that enables514
the model to accept a variable quantity of camera in-515
puts, similar to our method. This setup allows us to516
evaluate each model’s robustness to camera sparsity517
consistently.518

4.4. Main Results519

We evaluate MIC-BEV under both standard and robust520
settings. In the robust setting (applied only when more521
than one camera is available), we randomly select one522
camera and, with 50% probability, either drop its input523
entirely or apply Gaussian blur with σ sampled uni-524
formly from 3 to 10, simulating real-world sensor fail-525
ures and distortions. As shown in Tab. 2, MIC-BEV526
achieves the highest performance across all metrics,527
with an mAP/NDS of 0.767/0.726 on the normal set528
and 0.647/0.654 on the robust set. Notably, MIC-BEV529
maintains strong accuracy under degraded conditions,530
outperforming the second best method (UVTR) by531
4.4% mAP and 2.5% NDS in the robust setting. This532
highlights MIC-BEV’s robustness to partial observ-533

ability and sensor noise, which is a key advantage in 534
infrastructure scenarios with diverse camera layouts 535
and potential failures. 536

Tab. 3 presents per-class results on the normal M2I 537
testing set. MIC-BEV consistently surpasses prior 538
methods across all object categories. For pedestrians, 539
MIC-BEV achieves an mAP of 0.860, significantly 540
outperforming the second-best method (BEVFormer 541
at 0.814), highlighting its effectiveness in detecting 542
small and dynamic agents. For trucks, it scores 0.777, 543
higher than UVTR (0.740), demonstrating robustness 544
to large objects with varying shapes. For cars, MIC- 545
BEV leads with 0.806, exceeding UVTR (0.748) and 546
BEVFormer (0.659), maintaining high precision in 547
dense, structured traffic environments. Finally, despite 548
the inherent challenges of cyclist detection, it achieves 549
0.626, outperforming PETR and UVTR (0.597), re- 550
flecting its ability to handle occluded or elongated in- 551
stances. These consistent per-class performance gains 552
underscore our model’s reliability in varied layouts 553
and incomplete sensor views. 554

As shown in Fig. 3, MIC-BEV produces more com- 555
plete and accurate detection across multiple intersec- 556
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Table 3. Per-class results on the M2I normal testing set,
using mAP as the primary metric.

Method Pedestrian Truck Car Cyclist Avg.

LSS [32] 0.444 0.397 0.562 0.379 0.446
DETR3D [39] 0.764 0.571 0.584 0.485 0.601
PETR [27] 0.805 0.656 0.550 0.597 0.652
BEVFormer [25] 0.814 0.695 0.659 0.596 0.691
UVTR [22] 0.807 0.740 0.748 0.597 0.723
MIC-BEV 0.860 0.777 0.806 0.626 0.767

tions, with fewer false negatives and false positives557
compared to baseline models. We observe that the558
model consistently attends to complementary views559
when an object is partially visible, reinforcing its spa-560
tial reasoning capability. This aligns with the observed561
performance gains in occlusion-heavy scenarios.562

4.5. Ablation Studies563

In Tab. 4, we analyze the contributions of camera564
masking, BEV map prediction, and relation-enhanced565
attention. Each component provides clear perfor-566
mance gains, with camera masking improving robust-567
ness to missing views, and BEV map supervision en-568
hancing spatial consistency. Incorporating relation-569
aware attention yields the largest boost, with the full570
MIC-BEV model achieving the best performance at571
0.767 mAP and 0.726 NDS, demonstrating the effec-572
tiveness of dynamic, geometry-aware fusion.573

Table 4. Ablation study on M2I dataset showing impact of
camera mask, semantic map generation as auxiliary task,
and relation-enhanced attention.

Cam. Masking BEV Map Relation mAP NDS

✗ ✗ ✗ 0.691 0.676
✓ ✗ ✗ 0.705 0.684
✓ ✓ ✗ 0.727 0.697
✓ ✓ ✓ 0.767 0.726

To assess the necessity of temporal modeling in574
our setting, we remove the temporal self-attention575
module from the base BEVFormer architecture. The576
result in Tab. 5 shows that while temporal model-577
ing offers a slight improvement in NDS (0.729 vs.578
0.726), it results in a minor drop in mAP (0.765 vs.579
0.767). This indicates that temporal reasoning pro-580
vides limited gains in static infrastructure scenarios,581
where cameras are fixed and each frame already con-582
tains rich spatial information. MIC-BEV therefore583
omits the temporal module, achieving strong perfor-584
mance while reducing model complexity.585

To better evaluate the balance between model com-586
plexity and performance, we compare the trainable pa-587
rameter counts of different model variants in Tab. 6.588
MIC-BEV removes the temporal self-attention mod-589

Table 5. Influence of temporal self-attention module

Method mAP NDS

W/ temporal module 0.765 0.729
W/o temporal (base) 0.767 0.726

ule from BEVFormer and introduces a graph-based 590
spatial fusion module along with a BEV semantic 591
segmentation head. Despite these additions, the to- 592
tal number of trainable parameters increases by only 593
around 2M (from 67.33M to 69.32M), representing a 594
modest 3% growth. This small increase in model size 595
leads to notable performance gains, highlighting the 596
effectiveness of spatial relation modeling and seman- 597
tic supervision in infrastructure-based perception. 598

Table 6. Trainable parameter count across different versions
of the model.

Model Variant Trainable Parameters

BEVFormer (w/ temporal) 68,706,681
BEVFormer (w/o temporal) 67,326,201
MIC-BEV (GAT + Map Head) 69,321,692

5. Conclusions 599

We present MIC-BEV, a Transformer-based BEV per- 600
ception framework designed for multi-camera infras- 601
tructure scenarios. Built on our proposed M2I dataset, 602
which captures a wide range of roadside geome- 603
tries and camera configurations, MIC-BEV employs 604
relation-aware attention to dynamically fuse multi- 605
view features with enhanced spatial understanding 606
and interpretability. Experiments demonstrate that 607
MIC-BEV outperforms existing BEV-based baselines 608
in both clean and noisy settings, surpassing the per- 609
formance of state-of-the-art BEV perception models. 610
Ablation studies confirm the effectiveness of key com- 611
ponents, including camera masking for handling vari- 612
able inputs, BEV map segmentation as auxiliary su- 613
pervision, and relation-enhanced multi-view fusion. 614
Overall, MIC-BEV delivers a robust and scalable so- 615
lution for real-world infrastructure perception. 616

While MIC-BEV demonstrates strong perfor- 617
mance, it has several limitations. Its robustness un- 618
der extreme weather or lighting conditions remains 619
untested, and it assumes static, pre-calibrated cam- 620
era setups. Additionally, the current model focuses 621
primarily on object detection and does not yet ad- 622
dress tasks such as tracking. Future work will investi- 623
gate MIC-BEV’s performance in adverse environmen- 624
tal conditions and evaluate its generalization on real- 625
world infrastructure datasets. 626
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