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Abstract

Vehicle-to-everything (V2X) technologies offer a promising001
paradigm to mitigate the limitations of constrained observ-002
ability in single-vehicle systems. Prior work primarily fo-003
cuses on single-frame cooperative perception, which fuses004
agents’ information across different spatial locations but005
ignores temporal cues and temporal tasks (e.g., temporal006
perception and prediction). In this paper, we focus on the007
spatio-temporal fusion in V2X scenarios and design one-step008
and multi-step communication strategies (when to transmit)009
as well as examine their integration with three fusion strate-010
gies - early, late, and intermediate (what to transmit), provid-011
ing comprehensive benchmarks with 11 fusion models (how012
to fuse). Furthermore, we propose V2XPnP, a novel interme-013
diate fusion framework within one-step communication for014
end-to-end perception and prediction. Our framework em-015
ploys a unified Transformer-based architecture to effectively016
model complex spatio-temporal relationships across multiple017
agents, frames, and high-definition map. Moreover, we intro-018
duce the V2XPnP Sequential Dataset that supports all V2X019
collaboration modes and addresses the limitations of exist-020
ing real-world datasets, which are restricted to single-frame021
or single-mode cooperation. Extensive experiments demon-022
strate our framework outperforms state-of-the-art methods023
in both perception and prediction tasks. The codebase and024
dataset will be released to facilitate future V2X research.025

1. Introduction026

Autonomous driving systems are required to accurately per-027
ceive surrounding road users and predict their future trajec-028
tories to ensure safe and interactive driving. Despite recent029
advances in perception and prediction [10, 16, 38], single-030
vehicle systems still struggle with limited perception range031
and occlusion issues [28, 46], compromising driving perfor-032
mance and road safety. Consequently, vehicle-to-everything033
(V2X) technologies have emerged as a promising paradigm034
to address these challenges, which enable connected and035

Figure 1. Illustration of V2X temporal tasks and our V2X spatio-
temporal fusion framework. By incorporating temporal information,
our framework enhances V2X communication and supports end-to-
end perception and prediction beyond single-frame perception.

automated vehicles (CAVs) and infrastructures to share com- 036
plementary information and mitigate occlusions, thereby 037
supporting holistic environment understanding [13, 17, 19]. 038

Despite their potential, existing works focus on frame-by- 039
frame cooperative detection [26, 32, 43, 57], which aggre- 040
gates information from agents at different spatial locations. 041
However, these works overlook temporal cues across se- 042
quential frames, which are important for locating previously 043
visible but currently undetected objects [48] and predicting 044
object future trajectories [33]. Although some work [42, 51] 045
incorporate short-term temporal cues (0.5 s) in single-frame 046
perception to mitigate asynchrony, the broader challenge of 047
efficiently aggregating multi-agent and multi-frame informa- 048
tion and supporting long-term temporal tasks, such as motion 049
prediction, remains largely unexplored. Therefore, we aim 050
to address critical questions in multi-agent multi-frame co- 051
operation: (1) What information to transmit? (2) When to 052
transmit it? (3) How to fuse information across multi-agent 053
spatial and temporal dimensions? To address what to trans- 054
mit, we expand the three fusion strategies in single-frame 055
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cooperative perception (i.e., early, late, and intermediate)056
to incorporate the temporal dimension. Regarding when to057
transmit, we introduce one-step and multi-step communi-058
cation strategies to capture multi-frame temporal informa-059
tion. For how to fuse, we conduct a systematic analysis060
across various spatio-temporal fusion strategies, providing061
comprehensive benchmarks for cooperative perception and062
prediction tasks across all V2X collaboration modes.063

Among these strategies, we advocate intermediate fusion064
within one-step communication, because it effectively bal-065
ances the trade-off between accuracy and increased transmis-066
sion load. Moreover, its capability to transmit intermediate067
spatial-temporal features makes it well-suited for end-to-068
end perception and prediction, allowing for feature sharing069
across multiple tasks, as shown in Fig. 1. Based on this strat-070
egy, we propose V2XPnP, a V2X spatio-temporal fusion071
framework leveraging a unified Transformer structure for072
effective spatial-temporal fusion, encompassing temporal073
attention, self-spatial attention, multi-agent spatial attention,074
and map attention. Each agent first extracts its inter-frame075
and self-spatial features, which can support single-vehicle076
perception and prediction while reducing the communication077
load, and then the multi-agent spatial attention model fuses078
the single-agent feature across different agents.079

Another challenge is the lack of real-world sequential080
datasets encompassing diverse V2X collaboration modes.081
In V2X scenarios, vehicles and infrastructures serve as082
primary agents, with collaboration modes that include083
vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I),084
and infrastructure-to-infrastructure (I2I) [19]. Most exist-085
ing datasets [44, 49] are non-sequential, limited to single086
collaboration modes, and focus only on single-frame coop-087
erative perception, lacking support for temporal tasks. To088
bridge this gap, we introduce the first large-scale real-world089
V2XPnP Sequential Dataset, featuring four agents and sup-090
porting all collaboration modes. This dataset includes tem-091
porally consistent perception and trajectory data across 100092
vehicle-centric (VC) scenarios and 63 infrastructure-centric093
(IC) scenarios, totaling 40k frames, along with point-cloud094
and vector maps from 24 collected intersections. The main095
contributions of this paper can be summarized as follows:096

1. We present V2XPnP, a V2X spatio-temporal fusion frame-097
work with a novel intermediate fusion model within one-098
step communication. This framework is based on unified099
Transformer architecture integrating diverse attention fu-100
sion modules for V2X spatial-temporal information.101

2. We introduce the first large-scale, real-world V2X se-102
quential dataset featuring multiple agents and all V2X103
collaboration modes (i.e., VC, IC, V2V, I2I), encompass-104
ing perception data, object trajectories, and map data.105

3. We conduct extensive analysis across various spatio-106
temporal fusion strategies and benchmarks 11 fusion mod-107
els for cooperative perception and prediction in all V2X108

collaboration modes, demonstrating the state-of-the-art 109
performance of the proposed model. 110

2. Related Work 111

End-to-end Perception and Prediction. Safe autonomous 112
driving fundamentally depends on accurate perception and 113
prediction [18, 54]. In single-agent systems, significant ef- 114
forts have been dedicated to temporal perception and predic- 115
tion [29], leading to the development of various end-to-end 116
frameworks. These frameworks enhance computational ef- 117
ficiency by sharing information across tasks and mitigating 118
error propagation inherent in modular architectures. FaF 119
[33] and PnPNet [30] focus on Lidar-based joint perception 120
and prediction, while occupancy flow methods [2, 3] provide 121
detailed spatial-temporal information. Recently, Bird’s-Eye- 122
View (BEV)-based approaches with camera data have gained 123
prominence [12, 16, 21]. 124
V2X Perception and Prediction. V2X perception has been 125
extensively explored, with intermediate fusion emerging as 126
a widely adopted strategy [10, 45, 46]. FFNet [51] and 127
CoBEVFlow [42] utilize historical information (0.5s) from 128
collaborators to mitigate asynchrony, and SCOPE integrates 129
ego-history for detection. However, coordinating multi-agent 130
systems for long-term temporal tasks remains an open chal- 131
lenge. In the prediction domain, deep learning models have 132
been extensively studied for modeling inter-agent interac- 133
tions [20, 37]. However, the limited short-term visibility of 134
individual vehicles continues to restrict prediction accuracy. 135
Cooperative prediction leveraging V2X has shown poten- 136
tial, though research remains preliminary [34, 41, 48, 53]. 137
To integrate perception and prediction within an end-to-end 138
framework, V2VNet [40] employs a graph neural network 139
for spatio-temporal fusion. UniV2X [52] extended the end- 140
to-end system to support downstream tasks, but with a sim- 141
plified spatio-temporal fusion module. Despite these ad- 142
vancements, a comprehensive framework for V2X-based 143
spatio-temporal fusion is still lacking. 144
Real-world Driving Datasets. Public datasets have been in- 145
strumental in advancing autonomous driving research. Early 146
sequential datasets [1, 23] provided only object trajectories 147
on highways [56], but lack perception data. The following 148
datasets, such as nuScenes [5] and Waymo [39], introduced 149
real-world urban data but were limited to single-agent per- 150
spectives, rendering them unsuitable for V2X research. Thus, 151
simulated datasets like V2XSet [45] were developed. Re- 152
cently, datasets including Dair-V2X [49], V2V4Real [47], 153
RCooper [14], and V2X-Real [44] significant contributed 154
to real-world data in the V2I, V2V, I2I and V2X modes. 155
However, real-world sequential V2X datasets covering all 156
collaboration modes remain scarce. V2X-Seq [50] is the only 157
sequential dataset incorporated with various behavior and 158
map data for prediction tasks; however, is limited to V2I data 159
and has restricted accessibility with download constraints. 160
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Figure 2. Illustration of various V2X fusion strategies for perception and prediction. (a) What to Transmit: early, intermediate, and late fusion,
transmitting raw sensor data, intermediate BEV features, or bounding boxes. (b) When to Transmit: multi-step and one-step communication.

3. V2XPnP Fusion Framework161

The cooperative temporal perception and prediction task162
requires the integration of temporal information across his-163
torical frames and spatial information from multiple agents.164
It is defined as follows: given map and historical sequences165
of raw perception data Pt

i, i ∈ {1, · · · , N}, from all N166
agents within the communication range of the ego agent, the167
objective is to detect objects in the current frame and predict168
their future trajectories considering the map information.169

3.1. V2X Spatio-Temporal Fusion Strategies170

This section addresses what and when to transmit for spatio-171
temporal fusion, and Sec. 3.2 delves into the fusion process.172
What to Transmit. In multi-agent spatial fusion, three173
fusion strategies are widely adopted in single-frame coop-174
erative perception, i.e., early, late, and intermediate fusion175
[15, 49], which involve the transmission of raw perception176
data, bounding boxes, and intermediate features, respectively.177
Adopting this framework, we extend these fusion approaches178
to the V2X spatio-temporal fusion context, as illustrated in179
Fig. 2. (1) Early fusion transmits the entire raw historical180
perception data to retain complete feature information but181
imposes the highest transmission load. (2) Late fusion shares182
only the final detected results at each historical frame, result-183
ing in the lowest transmission load but losing most of the184
feature information. (3) Intermediate fusion transmits inter-185
mediate spatio-temporal BEV features, striking a balance186
between information quality and transmission load.187
When to Transmit. Determining when to transmit in spatio-188
temporal fusion is more challenging due to the inclusion189
of temporal data as compared to the existing spatial fusion.190
A straightforward approach is Multi-step Communication,191
where each transmission only includes the current frame’s192
data. However, the multiple steps cause the accumulation of193
delays and data loss, and obtaining complete historical data194
requires that neighboring agents stay within the ego agent’s195
limited communication range throughout historical frames.196
In practice, the ego agent should aggregate as much data197

as possible from other agents within a single transmission, 198
rather than relying on multiple exchanges to obtain complete 199
spatio-temporal information. To address this, we propose a 200
One-step Communication strategy, where individual agents 201
share all their historical data within a single communication. 202

Intermediate Fusion with One-step Communication. Syn- 203
thesizing the considerations for what to transmit and when 204
to transmit, we adopt an intermediate fusion within the one- 205
step communication strategy, which fuses temporal data 206
from multiple frames before transmission, allowing each 207
agent to share aggregated information without excessive 208
communication overhead. In multi-step intermediate fusion, 209
each agent transmits BEV feature maps at every timestep 210
Ft

i ∈ RH×W×C , which denotes agent i’s BEV feature at 211
time t with height H , width W , and channels C. The cu- 212
mulative data shared across T frames is a stacked sequence 213
Fseq

i ∈ RT×H×W×C , resulting in a significantly higher 214
transmission load than single-frame, along with potential de- 215
lays and data loss. Conversely, in our proposed strategy, each 216
agent first fuses its historical BEV features internally, reduc- 217
ing the sequence from Fseq

i to a single condensed BEV fea- 218

ture map F
′

i ∈ RH×W×C . This reduction allows agents to 219
transmit a compact data packet, comparable in size to single- 220
frame cooperative perception, thereby conserving bandwidth 221
while preserving essential spatio-temporal information. 222

3.2. V2XPnP Framework 223

The spatio-temporal features of intermediate fusion render 224
it a natural fit for end-to-end perception and prediction. Ac- 225
cordingly, we propose a unified end-to-end perception and 226
prediction framework to perform multiple tasks across spatio- 227
temporal dimensions. The overall V2XPnP framework is 228
illustrated in Fig. 3, which includes six components and is 229
unfolded in this section. The detail of the spatio-temporal 230
fusion model is provided in Sec. 3.3. Notably, each module 231
in V2XPnP is modular, allowing for easy replacement. 232

V2X Metadata Sharing. Each agent in the V2X system 233
is an observer and collaborator in the shared environment. 234

3



ICCV
#16

ICCV
#16

ICCV 2025 Submission #16. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 3. The V2XPnP framework and multi-agent spatio-temporal fusion model. The framework comprises various components for feature
extraction, fusion, and decoding. Within our fusion model, we introduce multiple attention mechanisms to enhance the fusion process.

Each agent will first determine its collaborators with its com-235
munication range, and share the metadata, such as relative236
poses and extrinsic, to construct a spatial V2X graph. Each237
node and edge in the graph represents an agent and a commu-238
nication channel. All the point clouds are transformed into239
the ego agent’s coordinate frame before feature extraction.240

LiDAR Feature Extraction. We utilize the PointPillar net-241
work [24] to extract the LiDAR feature for each agent i at242
time t, which has low inference latency. The extracted fea-243
tures are structured into a 2D pseudo-image representation to244
produce salient feature maps Ft

i, and the sequential feature245
is stacked as Fseq

i ∈ RT×H×W×C246

Multi-frame Temporal Fusion. We propose a Transformer-247
based temporal fusion module to iteratively perform inter-248
frame and intra-agent BEV feature fusion through self-249
attention mechanisms. The spatio-temporal feature of each250
agent is extracted through the temporal dimension while251
minimizing communication overhead. The feature map for252
each agent after temporal fusion is F

′

i ∈ RH×W×C .253

Compression and Sharing. To reduce the transmission254
load, intermediate features are compressed using a 1 × 1255
kernel convolution network in its channel dimension. The256
ego agent uses another convolution network to decompress257
the features, restoring them to their original dimensionality.258

Multi-agent Spatial Fusion. The decompressed features are259
passed into a Transformer-based multi-agent spatial fusion260
network to learn inter-agent and intra-agent spatio-temporal261
interaction and update the multi-agent feature map F

′
.262

Map Feature Extraction. The HD map is directly accessed263
for each agent without V2X fusion. We project the vec-264
torized HD map to BEV space by incorporating the map265
polylines into each BEV feature grid. We first employ a266
multi-layer perceptron (MLP) to encode the surrounding267
map polylines for each grid M ∈ RH×W×Nm×n×D, re-268
sulting in the map feature Fm ∈ RH×W×Nm×C . Here,269
Nm and n represent the number of map polylines and the270
waypoints per polyline, while D represents waypoint at-271
tributes (i.e., position and lane type). The map encoding272

is expressed as: Fm = ϕ (MLP (M)), where ϕ denotes 273
max-pooling on the waypoint axis. Then, a map-BEV 274
attention is introduced to inject the map feature into the 275
BEV feature. We concatenate the BEV and map feature 276
Fbm = [F

′
,Fm] ∈ RH×W×(1+Nm)×C , and add the posi- 277

tion embedding Pm based on sinusoidal positional encoding. 278
The final content feature map F ∈ RH×W×C is updated by 279
multi-head self-attention (MHSA) as follows: 280

F=MHSA
(
Q: [Fbm,Pm],K: [Fbm,Pm],V: Fbm

)
. (1) 281

Detection and Prediction Heads. Finally, a detection head 282
and a prediction head are connected to the final feature F to 283
output states for each predefined anchor box: (1) The detec- 284
tion head contains two 2D convolution layers for bounding 285
box regression and classification. The regression branch out- 286
puts (x, y, z, w, l, h, θ), which represents the bounding box 287
position, size, and yaw. The classification branch outputs the 288
confidence score of each anchor box, determining whether it 289
corresponds to an object or background. (2) The prediction 290
head outputs offset values for each anchor box at each future 291
timestamp using two 2D convolution layers, and the final 292
trajectory is generated by accumulating these offsets. 293

3.3. Spatio-Temporal Fusion Transformer 294

In this section, we introduce spatio-temporal fusion with 295
a unified Transformer architecture. The proposed model 296
comprises three blocks: temporal attention, self-spatial at- 297
tention, and multi-agent spatial attention, as shown in Fig. 3, 298
and two core fusion modules. (1) Multi-frame temporal fu- 299
sion: Each agent first extracts their spatio-temporal features 300
through iterative temporal and self-spatial attentions. (2) 301
Multi-agent spatial fusion: rich BEV features from multiple 302
agents are acquired via V2X and then fused through iterative 303
multi-agent spatial and self-spatial attentions. 304
Temporal Attention. This block is designed to capture 305
the inter-frame relationship and aggregate historical BEV 306
features Fseq

i across the temporal dimension. The history 307
timestamps are encoded with a learnable embedding, which 308
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is added to each BEV feature frame to form Fseq′

i . To pre-309
serve temporal cues, this block only fuses temporal features310
from the same spatial positions across frames, and spatial311
features are further extracted by the self-spatial Transformer.312
Temporal fusion is expressed as:313

Ftem
i = MHSA

(
Q: MLP(Fseq′

i ),K: MLP(Fseq′

i ),314

V: MLP(Fseq′

i )
)
. (2)315

Self-spatial Attention. To capture the intra-agent spatial316
BEV interaction, this block employs multi-scale window at-317
tention to capture spatial features at different resolutions and318
ranges. A large window focuses on global features for long-319
term behavior, and a small window preserves local finer in-320
formation. Note that this block only fuses spatial features for321
each agent in a frame without inter-frame and inter-agent fu-322
sion. Specifically, we utilize local, intermediate, and global323
windows Pk ∈ {Ploc, Pinter, Pgl} to partition the feature324
map through the H and W dimension, generating the self-325

spatial token Fsp ∈ R
H
Pk

× W
Pk

×Pk
2×C . With an additional326

relative position encoding, MHSA is operated among Pk
2327

tokens. The final output is obtained by performing split328
attention to fuse features from different windows.329
Multi-agent Spatial Attention. This block facilitates inter-330
agent fusion by aggregating BEV feature maps from multiple331
agents. Considering the different deployment positions and332
capabilities of vehicle and infrastructure sensors, the multi-333
agent spatial Transformer is heterogeneous with individual334
learnable weights for different interaction pairs (i.e., V-I,335
V-V, I-V, and I-I). The attention token of i th agent Fsp

i,m is336
modulated by its type m embedding, and is weighted by the337

relation matrix W(ei,j)
att between edge ei,j during aggregation338

with agent j of type n:339

Qm
i =MLP(Fi,m),Kn

j =MLP(Fj,n),V
n
j =MLP(Fj,n),340

Fsp
i,m =

∑
j

Softmax(Qm
i ·W(ei,j)

att ·Kn
j ) ·Vn

j . (3)341

3.4. Learning Objective342

The learning objective is comprised of temporal perception343
and prediction tasks. First, we define the perception loss344
as the combination of regression Lreg and classification loss345
Lcla of the predefined anchor box. Specifically, the smooth346
ℓ1-loss is leveraged for the regression part, and the focal347
loss [31] is utilized for classification. Second, we define348
the prediction loss Lpred as ℓ2-loss between the prediction349
points sequence with ground truth trajectory. The final loss350
function is the weighted sum of Lreg ,Lcla , and Lpred .351

4. V2XPnP Sequential Dataset352

We introduce the V2XPnP-Sequential dataset, the first large-353
scale, real-world V2X sequential dataset featuring multiple354

agents and all collaboration modes. This dataset comprises 355
100 scenarios (49 2V+2I scenarios, 42 V2V scenarios, and 9 356
V+2I scenarios), each spanning 95 to 283 frames captured at 357
10 Hz. The dataset comprises two data sequences from CAV 358
perception (point clouds and camera images) and two data se- 359
quences from infrastructure perception, as shown in Fig. 4(b). 360
We also provide corresponding vector maps and point-cloud 361
maps for all collection areas, as shown in Fig. 4(c). Ten 362
object categories are included, and the average trajectory 363
length and frequency of each category are shown in Fig. 4(d). 364
Further details on data visualization, annotation, trajectory 365
and map generation are provided in the supplementary. 366

4.1. Data Acquisition 367

V2X temporal tasks require diverse time-consistent percep- 368
tion data and object behavior data. We choose urban arterial 369
roads, expressways, and intersections to collect V2X data. 370
The sensor configurations for two CAVs and two infrastruc- 371
tures are shown in Fig. 4(a). By permuting and combining 372
the behavior patterns of CAVs (such as overtaking, platoon- 373
ing, turning, etc.), we designed a total of about 60 interaction 374
pairs between CAVs to collect data. From more than 66h 375
driving logs, we annotate 32 representative scenarios. We 376
also process the non-sequential data from V2X-Real [44] 377
with a V2X sequential data processing pipeline, detailed in 378
Sec. 4.2. Since perception tasks do not need to consider 379
labeling consistency, identical objects may be assigned dif- 380
ferent IDs within a sequence, leading to data fragmentation 381
and limiting support for temporal tasks. The final dataset is 382
yielded by processing our collected data and V2X-Real data. 383

4.2. Sequential Data Processing 384

Time-consistent data is crucial for temporal tasks, and thus 385
we develop a V2X sequential data processing pipeline to 386
track objects across time and different agents’ views. We 387
construct a multi-agent spatio-temporal graph, where each 388
node nk

it represents an annotated bounding box i at time t 389
from agent k’s LiDAR data, and edges connect nodes that 390
correspond to the same object. Identifying objects with 391
the same ID then reduces to finding connected components 392
in this graph, with each isolated component representing a 393
unique object. Moreover, we build this graph by leverag- 394
ing the temporal continuity in single-agent annotations and 395
incorporating multi-agent data. For temporal consistency 396
within a single agent, we add edges between nk

it and nk
it+1, 397

although annotation errors may sometimes assign different 398
IDs to the same object. To address this, we integrate an- 399
notations from multiple agents, transforming annotations 400
into a global coordinate frame and connecting nodes if their 401
Intersection-over-Union (IoU) exceeds a threshold. Once 402
the graph is complete, we identify connected components 403
and assign each a unique tracking ID. To mitigate annotation 404
biases, we refine object attributes based on their consensus. 405
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Figure 4. Illustration of the V2XPnP Sequential Dataset. (a) V2X data acquisition systems; (b) Sequential LiDAR and camera data; (c) Data
collection area and vector map; (d) Total number and average tracking length of 3D tracked objects per category.

5. Experiments406

5.1. Experimental Setup407

Evaluation Metrics. Following the detection evaluation408
protocol in [44], we measure detection performance using409
Average Precision (AP) at an IoU threshold of 0.5. For410
prediction, we provide the results of commonly used met-411
rics [11, 35, 36], including Average Displacement Error412
(ADE), Final Displacement Error (FDE), and Miss Rate413
(MR) within a 2-meter threshold. However, prediction accu-414
racy is influenced by false positives and missed detections415
from the perception module. For example, a poorly perform-416
ing perception module that detects only a simple object in417
a straight-line trajectory can misleadingly inflate the predic-418
tion accuracy. To address this, we employ the End-to-end419
Perception and Prediction Accuracy (EPA) metric [12] to420
jointly evaluate perception and prediction performance.421

EPA =
|Ŝmatch, hit| − αNFP

NGT
, (4)422

where |Ŝmatch, hit| is the number of true positive objects with423
prediction FDE < τEPA, NFP , NGT represent the number424
of false positive objects and ground truth objects, respec-425
tively, and α is a penalty coefficient. A higher EPA value426
indicates superior object detection and prediction capabili-427
ties, and we set τEPA = 2m, α = 0.5 following [12].428
Collaboration Modes. The V2XPnP Sequential Dataset429
supports various V2X collaboration modes by organizing430
data with specific interaction patterns. Vehicle-Centric (VC):431
The ego CAV is the focal agent, communicating with other432
CAVs and infrastructure (Infra). Infrastructure-Centric (IC):433
Infrastructure is the central entity, communicating with other434
Infras and CAVs. Vehicle-to-Vehicle (V2V): The ego CAV435
communicates exclusively with other CAVs without involv-436
ing Infra. Infrastructure-to-Infrastructure (I2I): Infra shares437
data only with each other. Each VC and IC scenario includes438
2-4 agents, which is close to real-world V2X settings and can439
evaluate model generalization across diverse V2X scenarios,440
whereas each V2V and I2I scenario has two agents.441
Implementation Details. During the testing stage, we select442

a fixed agent as the ego agent in each cooperative scenario, 443
while the ego agent is shuffled and randomly selected dur- 444
ing training. Following the real-time setting [55], we set 445
the communication range to 50 meters and evaluate sur- 446
rounding agents within a range of x ∈ [−70, 70]m and 447
y ∈ [−40, 40]m. Messages beyond 50 meters are discarded. 448
Besides, the history length is 2s (2Hz), and the prediction 449
horizon is 3s (2Hz). The train/validation/test data splits are 450
80/6/14 scenarios. Additional training and model details are 451
provided in the supplementary materials. 452

5.2. Benchmark Methods 453

End-to-end methods. Most of the single-frame perception 454
models cannot support the prediction task, thus, we first im- 455
plement a baseline end-to-end model with the same LiDAR 456
backbone and decoding heads as V2XPnP but utilizing the 457
temporal fusion module FaF [33] - alternating 2D and 3D 458
convolutions - as the No fusion-FaF∗ baseline, which can 459
extend the non-temporal model to support temporal tasks. 460
Then, the early fusion configurations and several state-of- 461
the-art intermediate fusion models are integrated as: Early 462
Fusion, FFNet∗ [51], CoBEVFlow∗ [42], V2X-ViT∗ [45]). 463
More benchmark results of DiscoNet∗ [27], F-Cooper∗ [6], 464
and V2VNet∗ [40] are provided in the supplementary. These 465
models marked with ∗ are reimplemented in our framework 466
with the same LiDAR backbone and decoding heads. 467
Decoupled methods. Transmitting final detection results 468
renders late fusion incompatible with end-to-end models. 469
Thus, we benchmark Late Fusion with a decoupled pipeline, 470
where objects in each historical frame are detected using a 471
single-frame perception module, and results are fused via 472
non-maximum suppression. Assuming an ideal tracker to 473
generate object trajectories from perception results and in- 474
terpolate missing points, we implement an attention-based 475
predictor for trajectory-level prediction tasks, following the 476
prediction mainstream [37]. To further assess end-to-end per- 477
formance, we also evaluate a decoupled No-Fusion model. 478

5.3. Results 479

Tab. 1 presents the benchmark results across four V2X col- 480
laboration modes. Since prediction performance inherently 481
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Table 1. Benchmark results of cooperative perception and prediction models on V2XPnP Sequential (V2XPnP-Seq) Dataset

Dataset Method E2E Map AP@0.5 (%) ↑ ADE (m) ↓ FDE (m) ↓ MR (%) ↓ EPA (%) ↑

V2XPnP-Seq-VC
(with V+2I at most)

No Fusion ✓ 43.9 1.87 3.24 33.8 24.3
No Fusion-FaF* [33] ✓ 53.4 1.55 2.81 34.3 31.6
Late Fusion ✓ 58.1 1.59 2.82 32.4 33.0
Early Fusion ✓ ✓ 60.3 1.37 2.49 33.8 36.7

CoBEVFlow* [42] ✓ ✓ 63.3 1.36 2.49 33.0 41.9
FFNet* [51] ✓ ✓ 64.6 1.36 2.47 34.7 42.3
V2X-ViT* [45] ✓ ✓ 69.6 1.39 2.56 35.2 44.7
V2XPnP (Ours) ✓ ✓ 71.6 +2.0 1.35 2.36 31.7 48.2 +3.5

V2XPnP-Seq-IC
(with 2V+I at most)

No Fusion ✓ 46.4 1.69 3.06 36.2 28.8
No Fusion-FaF* [33] ✓ 56.7 1.34 2.65 41.4 31.7
Late Fusion ✓ 55.9 1.39 2.44 30.1 32.9
Early Fusion ✓ ✓ 60.5 1.39 2.63 32.8 39.5

CoBEVFlow* [42] ✓ ✓ 57.6 1.38 2.58 31.0 32.5
FFNet* [51] ✓ ✓ 61.0 1.18 2.18 35.1 37.5
V2X-ViT* [45] ✓ ✓ 69.3 1.27 2.39 35.4 43.3
V2XPnP (Ours) ✓ ✓ 71.0 +1.7 1.18 2.16 34.0 46.0 +2.7

V2XPnP-Seq-V2V

No Fusion ✓ 40.8 1.99 3.38 34.0 19.8
No Fusion-FaF* [33] ✓ 51.9 1.67 3.12 39.3 27.5
Late Fusion ✓ 55.3 1.75 3.07 34.0 30.5
Early Fusion ✓ ✓ 53.0 1.64 3.11 40.2 26.9

CoBEVFlow* [42] ✓ ✓ 58.7 1.72 3.15 40.3 33.6
FFNet* [51] ✓ ✓ 56.5 1.68 3.12 39.8 31.2
V2X-ViT* [45] ✓ ✓ 64.6 1.68 3.13 39.8 36.7
V2XPnP (Ours) ✓ ✓ 70.5 +5.9 1.78 3.28 39.9 40.6 +3.9

V2XPnP-Seq-I2I

No Fusion ✓ 51.0 1.69 3.06 36.2 31.7
No Fusion-FaF* [33] ✓ 56.6 1.34 2.65 41.4 31.7
Late Fusion ✓ 61.3 1.41 2.50 30.0 41.6
Early Fusion ✓ ✓ 64.6 1.57 2.98 39.9 37.7

CoBEVFlow* [42] ✓ ✓ 58.4 1.31 2.61 41.5 33.0
FFNet* [51] ✓ ✓ 66.1 1.41 2.59 36.3 40.9
V2X-ViT* [45] ✓ ✓ 65.4 1.22 2.33 35.9 41.3
V2XPnP (Ours) ✓ ✓ 69.2 +3.1 1.26 2.31 36.5 42.8 +1.2

Table 2. Comparison of one-step and multi-step communication

Strategy AP@0.5 ↑ ADE ↓ FDE ↓ MR ↓ EPA ↑

Multi-step 68.2 1.56 2.84 31.8 43.0
One-step 71.6 1.35 2.36 31.7 48.2

depends on detection quality, the difficulty posed by different482
detected objects can significantly impact prediction accuracy.483
Thus, the EPA metric serves as the most appropriate indica-484
tor for assessing the overall performance. More details and485
baseline results are provided in the supplementary.486
What to Transmit. In both end-to-end and decoupled PnP487
frameworks, the cooperation perception and prediction per-488
formance are consistently better than non-fusion models489
in all collaboration modes, especially in the primary EPA490
metric, which demonstrates the benefits of cooperation in491
temporal perception and prediction. Moreover, intermediate492
fusion models (e.g., V2X-ViT, FFNet, and V2XPnP) gener-493
ally outperform other fusion strategies, while early fusion494
consistently surpasses late fusion. Our proposed V2XPnP495
model achieves the best performance, outperforming other496
competitive cooperative methods.497
When to Transmit. Tab. 2 shows the performance of our498

Table 3. Ablation results of V2XPnP model

Temp Spatial Map AP@0.5 ↑ ADE ↓ FDE ↓ MR ↓ EPA ↑

43.9 - - - -
✓ 57.2 1.52 2.76 35.5 33.8
✓ ✓ 71.3 1.48 2.70 36.2 44.4
✓ ✓ ✓ 71.6 1.35 2.36 31.7 48.2

model under two communication strategies. We find that the 499
perception and prediction performance of one-step commu- 500
nication is improved compared to multi-step communication 501
by 5.0% AP and 12% in EPA. This improvement arises 502
because each agent first directly fuses their lossless raw tem- 503
poral data before sharing, avoiding error accumulation from 504
lossy intermediate information transformed in multi-step 505
communication across temporal dimensions. Moreover, the 506
one-step strategy compresses spatio-temporal feature trans- 507
mission (under a 32× compression rate) from 5×0.269 Mb 508
to 0.269 Mb compared to multi-step communication, while 509
mitigating information loss when agents move out of com- 510
munication range in historical frames. At a typical C-V2X 511
data transmission rate [4], the transmission delay of one-step 512
communication is approximately 10 ∼ 20 ms. 513
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Figure 5. Qualitative results of different fusion models on the testing set. V2XPnP shows better perception and prediction results.

How to Fuse. Tab. 3 provides the ablation study of514
V2XPnP, showing the effectiveness of different components515
in V2XPnP. The temporal fusion module provides the history516
information for current-frame detection, while multi-agent517
spatial fusion alleviates occlusions and improves perfor-518
mance by incorporating other views. The map fusion module519
enhances trajectory prediction by guiding future trajectories520
to align with road structures. Our complete V2XPnP model521
with all these fusion modules performs the best.522

End-to-end vs. Decoupled Frameworks. The end-to-end523
model consistently outperforms the decoupled framework.524
In no-fusion situations, the end-to-end model FaF∗ outper-525
forms the decoupled model in detection by leveraging tem-526
poral cues. Furthermore, FaF∗ achieves performance com-527
parable to late fusion with V2X spatial aggregation due to528
integrating temporal features. The intermediate fusion of529
spatio-temporal features in V2XPnP aligns well with the end-530
to-end architecture, showcasing its superior performance.531

Infrastructure vs. Vehicle Centric. As shown in Tab. 1,532
models under VC and IC modes outperform those in V2V533
and I2I modes, because VC and IC can aggregate informa-534
tion from up to four agents rather than only two, resulting in535
enhanced environmental understanding. Notably, the eval-536
uation protocol is consistent across all models within each537
mode. Additionally, stationary infrastructure-based agents538
in IC and I2I modes offer higher prediction accuracy by539
providing elevated sensing perspectives and less noisy data.540

Transmission Data Size and Robustness Test. Results in541
Fig. 6 indicate that V2XPnP achieves a good balance be-542
tween communication efficiency and accuracy, maintaining543
superior performance compared to full-size V2X-ViT* even544
at a ×128 compression rate. Following the setting in [45],545
we provide the results with 100-500 ms time delay and po-546
sitional/head Gaussian noise from (0.2m, 0.2°) to (1m, 1°).547
Both V2XPnP and V2X-ViT* maintain robust performance548
due to their spatial attention fusion, and V2XPnP performs549
better due to designed temporal attention.550

Figure 6. Transmission data size and communication noise test
results. V2XPnP shows better performance with varying data com-
pression rates and robustness under communication noise.

Qualitative Results. Fig. 5 visualizes the outcomes of co- 551
operative perception and prediction across different fusion 552
models. The No Fusion model is constrained by its limited 553
field of view. The FaF model, leveraging temporal informa- 554
tion within an end-to-end pipeline, performs better under 555
occlusion. Late and early fusion models significantly benefit 556
from multi-agent data integration, though late fusion remains 557
impacted by error propagation, such as detection heading er- 558
rors misleading trajectory direction. Notably, the end-to-end 559
intermediate fusion model, particularly V2XPnP, performs 560
better in both detection and prediction tasks. 561

6. Conclusions 562

We propose V2XPnP, a novel V2X spatio-temporal fusion 563
framework for cooperative temporal perception and predic- 564
tion. The core of this framework is a unified Transformer- 565
based model for spatio-temporal fusion and map fusion. Fur- 566
thermore, we examine various fusion strategies concerning 567
what, when to transmit, and how to fuse, offering compre- 568
hensive benchmarks. Additionally, we introduce the V2X 569
Sequential Dataset, which supports all V2X collaboration 570
modes. Extensive experiments demonstrate the superior 571
performance of the proposed framework, establishing its 572
efficacy in advancing cooperative temporal tasks. 573
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A. Implementation Details864

In this section, we provide detailed configurations for cooper-865
ative perception and prediction tasks, including the baseline866
models used in our experiments and the proposed V2XPnP867
framework.868

A.1. Benchmark Model Details869

PointPillar Backbone. For all experiments, we employ the870
anchor-based PointPillar model [24] as the LiDAR Feature871
Extraction backbone. The voxel resolution is set to 0.4872
meters in both the x and y directions, with a maximum of 32873
points per voxel and a total of 32,000 voxels. Additionally,874
we set the number of anchors per grid cell to 2.875
Intermediate Fusion Methods. We implement several state-876
of-the-art single-frame intermediate fusion methods, includ-877
ing V2VNet [40], F-Cooper [6], DiscoNet [27],CoBEVFlow878

[42], FFNet [51], V2X-ViT [45], and our proposed V2XPnP 879
model, integrating them with our end-to-end model to re- 880
place the spatio-temporal fusion module. The model settings 881
and configurations for the fusion module adhere to the origi- 882
nal implementations. 883

Map Feature Extraction. HD maps are represented 884
as sets of polylines, with each polyline comprising 10 885
points. Because the map is projected onto the BEV 886
space, each grid only contains the five nearest polylines. 887
Each waypoint in a polyline contains seven attributes: 888
(x, y, dx, dy, type, xpre, ypre), representing position, direc- 889
tion, lane type, and previous position. These attributes are 890
encoded using MLP layers into a 256 hidden dimension 891
feature, followed by 1 or 2 Transformer layers with two 892
attention heads to model interactions among map elements. 893

Decoupled Attention Predictor. For the decoupled per- 894
ception and prediction pipeline, we implement an attention- 895
based predictor for trajectory-level prediction tasks. This 896
predictor utilizes a 1D Convolution + LSTM Network [8] 897
to encode temporal historical trajectories and a Transformer 898
layer to capture the interaction among objects and the map, 899
then an LSTM-based decoder generates the future predicted 900
trajectories. All trajectory data, including historical and pre- 901
dicted trajectories, are represented in the local coordinate 902
frame of each object. 903

A.2. V2XPnP Model Details 904

Temporal Attention. To capture the temporal dependence, 905
we initialize the historical timestamp sequence using Sinu- 906
soidal positional encodings conditioned on time and further 907
process these encodings through a Linear layer. The tempo- 908
ral attention block in the multi-frame temporal fusion module 909
has four attention heads. To enhance the inter-frame feature 910
representation, we stack three temporal fusion modules with 911
the temporal attention block. 912

Self-spatial Attention. This block is applied following 913
either the temporal attention or the multi-agent spatial atten- 914
tion. In self-spatial attention, the feature map is partitioned 915
into patches using common window sizes of (2, 4, 8). Given 916
the complexity of spatio-temporal fusion across multiple 917
agents, the self-spatial attention module employs a higher 918
number of attention heads (16, 8, 4) after multi-agent spa- 919
tial fusion, compared to the heads (8, 4, 2) used following 920
temporal attention. 921

Multi-agent Spatial Attention. Our dataset categorizes 922
agents as infrastructure agents, denoted by negative labels 923
(i.e., −1 and −2), or connected automated vehicles (CAV) 924

12



ICCV
#16

ICCV
#16

ICCV 2025 Submission #16. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

agents, denoted by positive labels (i.e., 1 and 2). To capture925
the heterogeneous dependencies among these agents, we926
construct a heterogeneous graph and employ distinct atten-927
tion fusion parameters for each agent type. The multi-agent928
spatial attention utilizes eight attention heads, and we stack929
three multi-agent spatial fusion modules with the multi-agent930
spatial attention to capture the inter-agent relationships.931

A.3. Loss Function932

This section provides the loss function employed in our933
multi-task model. The initial weights of regression loss Lreg ,934
classification loss Lcla and prediction loss Lpred are set as935
wreg, wcla, wpred = 2.0, 1.0, 2.0. For single-task learning, the936
same loss function is used but weights exclusively on the937
components relevant to that task.938
Perception Loss. The perception task loss combines classi-939
fication and regression components, designed to align pre-940
dicted anchor boxes with ground truth labels. For classifi-941
cation, which involves identifying objects and background942
elements, we employ Focal Loss [31] to address the imbal-943
ance between foreground and background samples. The944
Focal Loss is expressed as:945

Lcla = −α(1− pt)
γ log(pt), (S1)946

where pt is the predicted probability for the target anchor947
box, and α and γ are balancing and focusing factors. Anchor-948
wise weights are applied to further enhance the balance949
between positive and negative samples.950

For the regression component, we employ Smooth ℓ1-951
Loss to optimize the predicted bounding boxes to match952
the ground truth labels in terms of position and orientation,953
and a sine-cosine encoding is employed to handle rotational954
ambiguities. The Smooth ℓ1-Loss is defined as:955

Lreg =

{
0.5 · ∆2

β , if|∆| < β,

|∆| − 0.5 · β, otherwise,
(S2)956

where ∆ = prediction − target, and β is a hyper-parameter957
controlling the transition between ℓ1 and ℓ2 loss.958
Prediction Loss. We adopt the ℓ2-loss function to minimize959
the discrepancy between the predicted trajectory and the960
ground truth.961

Lpred =
1

Ndet

1

Tvalid

Ndet∑
i=1

Tvalid∑
t=1

∥µi
t − xi

t∥2, (S3)962

where µi
t and xi

t represent the predicted position and target963
position of the i-th object at time step t. Tvalid is the num-964
ber of valid future time steps for the agent, and Ndet is the965
number of detected objects.966

A.4. Training Strategy967

The end-to-end cooperative perception and prediction model968
addresses two distinct yet interrelated tasks while integrating969

information across both temporal and spatial dimensions. 970
Training such an end-to-end model from scratch often results 971
in suboptimal performance, due to the inherent complexity of 972
jointly optimizing these tasks and dimensions. To effectively 973
handle these challenges, we adopt a multi-stage training 974
strategy to progressively refine the model’s capabilities. 975

Multi-Stage Training Strategy. Initially, the end-to-end 976
perception and prediction model is trained in a single-agent 977
setting, focusing on temporal fusion without incorporating 978
multi-agent spatial fusion. It simplifies the optimization 979
process, enabling the model to learn robust temporal features 980
in isolation. The resulting single-agent model then serves 981
as a pre-trained model for subsequent multi-agent spatial 982
fusion training in the V2X environment. This staged training 983
strategy ensures that the model incrementally acquires the 984
ability to handle the complexities of cooperative perception 985
and prediction tasks. 986

Stage 1: Single-Agent Multi-task Learning. The single- 987
agent model training stage addresses the core challenge of 988
coordinating multi-task learning to capture complex patterns 989
across perception and prediction tasks. Prediction task re- 990
quires a comprehensive understanding of objects’ temporal 991
information and their intricate motion patterns, while de- 992
tection focuses mainly on identifying objects in the current 993
frame, with historical information providing supplementary 994
context. Training both tasks jointly without proper initial- 995
ization risks overfitting to simpler current-frame features, 996
thereby neglecting the rich but complex temporal features 997
essential for accurate prediction. Moreover, perception is 998
foundational to prediction, as detecting an object is a pre- 999
requisite for predicting its motion. To effectively balance 1000
the two tasks, we adopt a task-specific training strategy. (1) 1001
Single-Frame Perception Training: the training begins by op- 1002
timizing the model for single-frame perception, establishing 1003
a foundation for object detection. (2) Temporal Prediction 1004
Training: the prediction task is introduced by freezing the 1005
parameters of the detection backbone and training an addi- 1006
tional temporal network and prediction head, guiding the 1007
model to focus more on the prediction task and effectively 1008
learn complex temporal dependencies. (3) Joint Fine-Tuning: 1009
the entire model is unfrozen, enabling end-to-end fine-tuning 1010
across both tasks. 1011

Stage 2: Multi-Agent Spatiotemporal Learning. Based 1012
on the pre-trained single-agent model, the multi-agent fu- 1013
sion module is introduced and jointly trained with the entire 1014
model. At this stage, the primary focus is to balance the 1015
two tasks, ensuring that neither perception nor prediction 1016
dominates the training process. To achieve this, we employ a 1017
dynamic loss-weighting strategy that gradually increases the 1018
weight assigned to the prediction loss. This approach ensures 1019
balanced optimization, avoiding performance trade-offs be- 1020
tween tasks and improving overall effectiveness across both 1021
perception and prediction objectives. 1022
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Table S1. Additional benchmark results of cooperative perception and prediction models on V2XPnP Sequential (V2XPnP-Seq) Dataset

Dataset Method E2E Map AP@0.5 (%) ↑ ADE (m) ↓ FDE (m) ↓ MR (%) ↓ EPA (%) ↑

V2XPnP-Seq-VC
(with V+2I at most)

V2VNet* [40] ✓ 48.6 2.10 3.75 42.3 25.3
F-Cooper* [6] ✓ ✓ 66.0 1.35 2.56 36.1 38.7
DiscoNet* [27] ✓ ✓ 66.8 1.41 2.62 34.4 42.8
V2XPnP (Ours) ✓ ✓ 71.6 1.35 2.36 31.7 48.2

V2XPnP-Seq-IC
(with 2V+I at most)

V2VNet* [40] ✓ 33.6 1.95 3.53 44.2 16.3
F-Cooper* [6] ✓ ✓ 60.2 1.21 2.32 36.3 36.3
DiscoNet* [27] ✓ ✓ 65.4 1.14 2.18 36.1 40.7
V2XPnP (Ours) ✓ ✓ 71.0 1.18 2.16 34.0 46.0

V2XPnP-Seq-V2V

V2VNet* [40] ✓ 43.1 3.10 5.55 46.8 19.4
F-Cooper* [6] ✓ ✓ 60.2 1.69 3.22 41.1 34.4
DiscoNet* [27] ✓ ✓ 61.2 1.66 3.13 41.2 33.1
V2XPnP (Ours) ✓ ✓ 70.5 1.78 3.28 39.9 40.6

V2XPnP-Seq-I2I

V2VNet* [40] ✓ 41.1 1.83 3.34 40.4 23.2
F-Cooper* [6] ✓ ✓ 58.6 1.34 2.58 40.0 33.6
DiscoNet* [27] ✓ ✓ 63.5 1.15 2.19 37.5 38.4
V2XPnP (Ours) ✓ ✓ 69.2 1.26 2.31 36.5 42.8

Training Details. The model is trained using the Adam1023
optimizer [22] with an initial learning rate of 2× 10−3 and1024
a weight decay of 1× 10−4 with early stopping on NVIDIA1025
L40S GPUs. We employ 4 training stages, as detailed before,1026
and each training stage consists of 30 epochs with a batch1027
size of 2. Early stopping is employed to prevent overfitting.1028
We carefully tune the hyperparameters to ensure the stability1029
and efficiency of the training process.1030

B. Additional Benchmark Results1031

In this paper, we benchmark different spatiotemporal strate-1032
gies with 11 fusion models in total:1033

• No Fusion: No Fusion, No Fusion-FaF1034

• Early Fusion: Early Fusion1035

• Late Fusion: Late Fusion1036

• Intermediate Fusion: V2VNet [40], F-Cooper [6], Dis-1037
coNet [27], CoBEVFlow [42], FFNet [51], V2X-ViT [45],1038
and our proposed V2XPnP.1039

We present additional benchmark results for V2VNet [40],1040
F-Cooper [6], and DiscoNet [27] across all collaboration1041
modes, as shown in Tab. S1. Our proposed V2XPnP consis-1042
tently outperforms these SOAT baselines in terms of EPA1043
and AP across all collaboration modes. Notably, V2VNet*1044
exhibits lower performance, likely due to the absence of a1045
map and the loss of temporal features during explicit feature1046
ROI matching.1047

C. Cooperative Temporal Perception Task1048

In addition to the end-to-end perception and prediction task,1049
the sequential nature of our V2XPnP-Sequential dataset fa-1050
cilitates other temporal tasks, including temporal perception1051

and traditional prediction tasks. In this section, we introduce 1052
the cooperative temporal perception task and present bench- 1053
mark results on the V2XPnP-Sequential dataset. Details on 1054
the traditional prediction task are provided in Sec. D. 1055

C.1. Problem Formulation 1056

The cooperative temporal perception task is an extension of 1057
the single-frame perception task by incorporating historical 1058
context. Specifically, given historical T frames raw percep- 1059
tion data Pt

i, i ∈ {1, · · · , N} from all N agents within the 1060
communication range of the ego agent, the objective is to 1061
detect the surrounding objects in the current frame. The core 1062
challenge lies in effectively leveraging temporal information 1063
from T past frames to enhance detection accuracy in the 1064
present frame. 1065

C.2. Benchmark Methods 1066

For benchmarking, we adapt our end-to-end model, V2XPnP, 1067
by removing the prediction head, resulting in a model only 1068
for temporal perception. Various V2X fusion strategies are 1069
evaluated in this framework, as detailed in Tab. S2. More- 1070
over, we provide another baseline FaF∗, which adopts a 1071
combination of 2D and 3D convolutions for temporal fu- 1072
sion. FaF∗ further integrates with the F-Cooper intermediate 1073
fusion method and early fusion method for V2X fusion com- 1074
parison. We also provide the results of the No Temp model, 1075
which excludes temporal fusion and is evaluated using both 1076
F-Cooper and early fusion methods. Model parameters and 1077
experimental setups for this task are consistent with those 1078
used for the end-to-end cooperative perception and predic- 1079
tion task. 1080
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Table S2. Benchmark results for cooperative temporal perception. No Temp: single-frame perception, FaF∗: temporal perception with
alternating 2D and 3D convolutions, V2XPnP: temporal perception with temporal attention modules.

Dataset
No Fusion (AP@0.5 (%) ↑) Early Fusion (AP@0.5 (%) ↑) Intermediate Fusion (AP@0.5 (%) ↑)

No Temp FaF∗ V2XPnP No Temp FaF∗ V2XPnP No Temp FaF∗ V2XPnP

V2XPnP-Seq-VC 43.9 57.1 60.3 63.5 67.0 71.0 65.1 70.3 74.0

V2XPnP-Seq-IC 46.4 61.1 64.7 61.0 65.5 71.4 61.1 67.1 73.2

V2XPnP-Seq-V2V 40.8 53.7 59.1 54.9 56.4 66.6 58.0 61.4 69.4

V2XPnP-Seq-I2I 51.0 61.2 64.7 63.4 66.0 71.6 58.5 62.9 72.4

C.3. Benchmark Results1081

The results demonstrate that incorporating temporal cues1082
significantly improves perception performance across all1083
multi-agent fusion strategies. Notably, our V2XPnP model1084
achieves superior results compared to other baselines, due1085
to the careful design of temporal attention. However, we1086
observe a slight performance drop when the same model is1087
applied to the end-to-end cooperative perception and pre-1088
diction task, compared to its use solely for temporal per-1089
ception. The possible reason is the difficulty of optimizing1090
both tasks to achieve optimal performance. Nevertheless,1091
the end-to-end model still outperforms other baselines in1092
both perception and prediction tasks. Future research should1093
focus on optimizing the balance between multiple tasks to1094
further enhance the performance of end-to-end models.1095

D. Traditional Cooperative Prediction Task1096

D.1. Problem Formulation1097

V2XPnP sequential dataset also supports the traditional pre-1098
diction task. Compared to end-to-end models, which directly1099
infer future states of objects from perception data, the tradi-1100
tional prediction task forecasts their future trajectories from1101
historical trajectories. The cooperative prediction task is1102
formulated as: given the map and the historical trajectories1103
of all detected objects obtained from the ego agent and other1104
agents (e.g., CAVs and infrastructure units) within the com-1105
munication range of the ego agent, the objective is to predict1106
future trajectories of these detected objects.1107

D.2. Benchmark Methods1108

To investigate the influence of perception results on predic-1109
tion tasks, we provide two types of input for the prediction1110
models: 1) Ground-truth historical trajectories of surround-1111
ing objects; 2) Perception-based historical trajectories gener-1112
ated by the upstream perception module. The first one is the1113
common setting for the traditional trajectory prediction task,1114
assuming full availability of accurate historical trajectories1115
for prediction. However, it ignores real-world challenges1116

such as occlusions and cumulative errors introduced by sep- 1117
arate modules. To address this limitation and enable a more 1118
realistic evaluation, we designed the second setting, where 1119
CAVs can only derive the historical trajectories from the 1120
perception results and thus the perception uncertainty can 1121
propagate to the downstream prediction. Notably, regard- 1122
less of the input type, the prediction model is trained using 1123
the complete future trajectory dataset aggregated from all 1124
agents. 1125

In our experiment, the prediction model configuration 1126
and experimental setup align closely with the decoupled at- 1127
tention predictor. Following the LSTM baseline setting in 1128
the Waymo motion dataset [9], the LSTM model also serves 1129
as a strong baseline, which includes an LSTM encoder and 1130
LSTM decoder. We report benchmark results under three 1131
configurations: No Fusion, where no perception information 1132
is fused; Ground Truth, assuming perfect historical trajec- 1133
tories; Late Fusion, where the decoupled pipeline from the 1134
traditional prediction task is employed. 1135

D.3. Benchmark Results 1136

The experimental results, summarized in Tab. S3, compare 1137
traditional prediction under three input settings: ground 1138
truth trajectories, perception without fusion, and percep- 1139
tion with late fusion. The results indicate that as perception 1140
improves—from no fusion to late fusion—the prediction per- 1141
formance correspondingly increases. When the environment 1142
is fully observable, the task simplifies to the traditional pre- 1143
diction setup, achieving the best overall performance for both 1144
detection and prediction. A significant drop in performance 1145
is observed for perception-based prediction, highlighting the 1146
critical dependency of predictive tasks on perception accu- 1147
racy. Moreover, the Attention predictor shows better robust- 1148
ness compared to the LSTM baseline under noisy perception 1149
inputs, thanks to the attention module for complex inter- 1150
action feature capturing. We anticipate that this temporal 1151
prediction task will inspire further exploration of perception- 1152
based prediction approaches. 1153
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Table S3. Benchmark results for traditional prediction. No Fusion: prediction based on the no-fusion perception results. Late Fusion:
prediction based on the late fusion perception results. Ground Truth: prediction based on the ground truth trajectories with no occlusion or
perception errors.

Dataset Method
Attention Predictor LSTM Predictor

AP@0.5(%) ↑ ADE(m) ↓ FDE(m) ↓ MR(%) ↓ AP@0.5(%) ↑ ADE(m) ↓ FDE(m) ↓ MR(%) ↓

V2XPnP-Seq
-VC

No Fusion 43.9 1.87 3.24 33.8 43.9 2.91 4.77 35.0
Late Fusion 58.1 1.59 2.81 34.3 58.1 2.76 4.60 33.7
Ground Truth - 0.60 1.26 23.0 - 0.66 1.31 23.0

V2XPnP-Seq
-IC

No Fusion 46.4 2.10 3.75 42.3 46.4 2.11 3.67 35.8
Late Fusion 55.9 1.39 2.44 30.1 55.9 2.61 4.40 32.7
Ground Truth - 0.63 1.35 26.2 - 0.61 1.31 25.0

V2XPnP-Seq
-V2V

No Fusion 40.8 1.99 3.38 34.0 40.8 2.98 4.82 34.4
Late Fusion 55.3 1.75 3.07 34.0 55.3 2.87 4.79 35.0
Ground Truth - 0.60 1.26 22.9 - 0.66 1.31 22.8

V2XPnP-Seq
-I2I

No Fusion 51.0 1.69 3.06 36.2 51.0 2.11 3.67 35.9
Late Fusion 61.3 1.41 2.50 30.0 61.3 2.44 4.18 32.1
Ground Truth - 0.63 1.35 26.2 - 0.61 1.31 25.0

E. V2XPnP Sequential Dataset Details1154

E.1. Dataset Visualization1155

Our V2XPnP-Sequential dataset provides two sensor se-1156
quences (LiDAR and camera) collected in dense urban envi-1157
ronments, capturing diverse interactive behaviors over time.1158
Fig. S1 illustrates two representative interaction scenarios in1159
our dataset, presenting LiDAR and camera data from mul-1160
tiple agents at two key timestamps. The main intersection1161
objects pair have been annotated with red and yellow blocks1162
in different agents’ views.1163

E.2. Data Acquisition1164

Sensor Specifications. The dataset was collected using four1165
agents - two connected automated vehicles and two smart in-1166
frastructure units. Each CAV is equipped with a RoboSense1167
128-beam LiDAR, four stereo RGB cameras with 1920 ×1168
1080 resolution, and an integrated GPS/IMU system. The1169
four stereo cameras are mounted on the front, rear, left, and1170
right sides of the CAV, providing a complete 360-degree field1171
of view. Similarly, each infrastructure unit is configured with1172
a 128- or 64-beam LiDAR, two Axis cameras with 1920 ×1173
1080 resolution, and a GPS module. The sensor deployment1174
of our data collection system is shown in Fig. 4(a).1175
Coordinate System. Our V2XPnP-Sequential dataset en-1176
compasses three coordinate systems: the LiDAR coordinate1177
system, the camera coordinate system, and the map coordi-1178
nate system. Each agent - vehicle or infrastructure - main-1179
tains its own local LiDAR and camera coordinate systems.1180
The global map coordinate system serves as the reference1181
for all annotations and maps. The transformation from each1182
agent’s local LiDAR coordinate to the map coordinate in1183
each frame is achieved with the GPS/IMU data and the of-1184

fline PCD map. We also conduct the 3D-2D calibration for 1185
LiDAR and camera, as shown in Fig. 4(b). 1186

E.3. Data Annotation and Processing 1187

Data Annotation. The 3D bounding boxes in our V2XPnP- 1188
Sequential dataset are annotated using an open-source la- 1189
beling tool, SUSTechPOINTS [25], by expert annotators. 1190
The first step is annotating the bounding boxes in the point 1191
clouds from the two CAVs and infrastructure units. Then, 1192
these bounding boxes, annotated in different agents’ coordi- 1193
nate frames, are processed through a V2X sequential pipeline 1194
to assign consistent object IDs across agents and temporal 1195
frames. To ensure annotation quality, each object is sub- 1196
jected to eight rounds of review and revision. In total, ten 1197
object categories are included in our dataset: car, pedestrian, 1198
scooter, motorcycle, bicycle, truck, van, concrete truck, bus, 1199
and road barrier. Each object annotation includes the center 1200
of the bounding box (x, y, z), sizes (width, length, height), 1201
and orientation (roll, yaw, pitch) in the global coordinates. 1202
Notably, we follow a general object definition in annotation, 1203
encompassing stationary objects such as parked vehicles 1204
and barriers, which are annotated similarly to movable ob- 1205
jects but explicitly labeled as static. This aligns with public 1206
datasets like nuScenes [5], where static objects are tracked 1207
while maintaining consistent IDs. 1208
Trajectory Generation. In addition to perception data, the 1209
dataset provides a ground-truth trajectory dataset derived 1210
from the fused perception data of all agents, capturing the tra- 1211
jectories of objects across all frames. This trajectory dataset 1212
is primarily utilized in traditional prediction tasks, which as- 1213
sume all history trajectories are observable to the ego agent. 1214
However, this assumption ignores the fact that the trajectories 1215
obtained from onboard sensors are incomplete due to occlu- 1216

16



ICCV
#16

ICCV
#16

ICCV 2025 Submission #16. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure S1. Examples of interaction scenarios from the V2XPnP-Sequential dataset. The dataset multi-agent perception perspectives and
captures diverse interaction behaviors among ten object classes in dense urban traffic environments.
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Table S4. Comparison between the V2XPnP-Sequential dataset and other public available driving datasets

Dataset Year Type V2V V2I I2I Trajectory Map
Agent

Number
Tracked

Objects/Scene
3D

Boxes
RGB

Images
LiDAR
Frames

Categories

nuScenes [5] 2019 Real ✓ ✓ 1 75.75 1.4M 1.4M 400k 23
Waymo Open [9] 2019 Real ✓ ✓ 1 - 12M 1M 200k 4

OPV2V [46] 2022 Sim ✓ 2.89 26.5 230k 44k 11k 1
V2X-Sim [28] 2022 Sim ✓ ✓ ✓ 10 - 26.6k 0 10k 1
V2XSet [45] 2022 Sim ✓ ✓ ✓ 2-7 - 230k 44k 11k 1

DAIR-V2X [49] 2022 Real ✓ 2 0 464k 39k 39k 10
V2V4Real [47] 2023 Real ✓ ✓ ✓ 2 - 240k 40k 20k 5
V2X-Seq [50] 2023 Real ✓ ✓ ✓ 2 110 464k 71k - 10
RCooper [14] 2024 Real ✓ ✓ 4 - - 50k 30k 10
V2X-Real [44] 2024 Real ✓ ✓ ✓ 4 0 1.2M 171K 33k 10

V2XPnP-Seq 2024 Real ✓ ✓ ✓ ✓ ✓ 4 136 1.45M 208k 40K 10

sion and limited perception range, and no specific datasets1217
are designed to support this task. To support research in1218
prediction with real-world sensor constraints, we provide a1219
trajectory retrieve module in the V2XPnP-Sequential dataset1220
to return observable trajectories of surrounding objects based1221
on their actual visibility relationships.1222
Map Generation. The HD map generation involves two1223
stages: point cloud (PCD) map generation and vector map1224
generation. (1) To generate the PCD map, each LiDAR frame1225
from the CAVs is preprocessed to remove dynamic objects,1226
retaining only static elements essential for mapping. Then,1227
a Normal Distributions Transform (NDT) scan-matching al-1228
gorithm is employed to compute the relative transformation1229
between consecutive frames, forming the basis of the Li-1230
DAR odometry. We also incorporate translation and heading1231
information obtained from the vehicle’s GPS/IMU system,1232
integrating them through a Kalman filter to refine the pose1233
estimation, mitigating the drift from the error accumulation1234
in LiDAR data. Finally, the LiDAR sequences are fused1235
to form the PCD map across all collection areas. (2) The1236
aggregated PCD map is imported into RoadRunner [7] to1237
generate vector maps. Road geometry is inferred and an-1238
notated based on intensity variations visualized by distinct1239
color mappings within RoadRunner, and all the semantic1240
attribution is annotated based on the collected camera data,1241
such as road type (e.g., driving, sidewalk, and parking) and1242
line type (e.g., solid and broken yellow line combination and1243
solid white line). Finally, the generated maps are exported1244
in the OpenDRIVE (Xodr) format and converted to Waymo1245
map format [9], ensuring compatibility with downstream1246
applications.1247

E.4. Dataset Analysis1248

Tab. S4 presents the comparison of the V2XPnP-Sequential1249
dataset with existing driving datasets. Our dataset tracks an1250
average of 136 objects per scene, recording high-density and1251

Figure S2. Examples of intersection types in the map, including
T-junctions, roundabouts, and crossroads. The gray point clouds in
the background represent the PCD map, while lane transitions and
gradients are depicted in the map.

complex traffic scenarios. Furthermore, the dataset’s exten- 1252
sive map and trajectory data further enhance its utility in 1253
cooperative perception and prediction research across all col- 1254
laboration modes. The data distribution of ten object classes 1255
is shown in Fig. 4(d). The dataset covers 24 intersections of 1256
varying types, including roundabouts, T-junctions, and cross- 1257
roads, as shown in Fig. S2. Notably, many collection areas 1258
have a significant gradient, which can facilitate the detection 1259
and prediction research in diverse terrain conditions. 1260

E.5. Dataset Privacy Protection 1261

The V2XPnP-Sequential dataset is designed with stringent 1262
privacy safeguards to ensure the anonymity of individuals 1263
and vehicles. Trajectory data only include object IDs and 1264
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positions, eliminating the possibility of tracking specific1265
entities. All perception data undergoes privacy-preserving1266
processing, with LiDAR annotations retaining only essential1267
attributes such as object ID, agent type, and bounding box1268
pose. Additionally, all image data has been anonymized,1269
with human faces and other potentially sensitive details ob-1270
scured or removed.1271
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