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Abstract

Generative image models are increasingly being used for001
training data augmentation in vision tasks. In the context002
of automotive object detection, methods usually focus on003
producing augmented frames that look as realistic as pos-004
sible, for example by replacing real objects with generated005
ones. Others try to maximize the diversity of augmented006
frames, for example by pasting lots of generated objects onto007
existing backgrounds. Both perspectives pay little attention008
to the locations of objects in the scene. Frame layouts are009
either reused with little or no modification, or they are ran-010
dom and disregard realism entirely. In this work, we argue011
that optimal data augmentation should also include realistic012
augmentation of layouts. We introduce a scene-aware proba-013
bilistic location model that predicts where new objects can014
realistically be placed in an existing scene. By then inpaint-015
ing objects in these locations with a generative model, we016
obtain much stronger augmentation performance than exist-017
ing approaches. We set a new state of the art for generative018
data augmentation on two automotive object detection tasks,019
achieving up to 2× higher gains than the best competing020
approach (+1.4 vs. +0.7 mAP boost). We also demonstrate021
significant improvements for instance segmentation.022

1. Introduction023

Generative Data Augmentation describes the use of genera-024
tive models to create synthetic data that extends the training025
corpus of a learning model. The appeal of “free” training026
data has long motivated related work [3, 17], but with the027
recent progress in large generative image models [20, 34, 35]028
the interest in this field has increased drastically, with promis-029
ing successes in image classification [19, 50] and object de-030
tection [15, 36, 49]. This includes automotive scenes [6, 14],031
the focus of this work, where the benefit of generative data032
augmentation is especially large, as edge case scenarios are033
often safety-critical and costly to acquire. Existing methods034
for training data augmentation usually concern themselves035

with improving the quality of generated objects, but they of- 036
ten neglect reasoning about their locations. Some approaches 037
reuse original object locations from real frames [14, 27, 36], 038
possibly with minor modifications [6, 38], which results 039
in augmented frames that are visual variations of the same 040
scene. Alternatively, other methods add new objects in ran- 041
dom locations [49], completely ignoring the original scene 042
composition, which results in unrealistic generations (Fig. 1). 043

In this work, we argue that object locations should also 044
be considered a key component of data augmentation. To 045
demonstrate this, we propose a scene-aware probabilistic lo- 046
cation model that, given an existing scene, predicts where a 047
new object should be placed. Specifically, our model parses 048
the scene to extract depth and drivable space, and it factor- 049
izes the joint probability of object categories, their locations, 050
and their dimensions into a series of simpler conditional den- 051
sities, which can be sampled from with ancestral sampling. 052
We then combine our location model with an inpainting 053
diffusion model [34] to render objects in the predicted lo- 054
cations, yielding augmented frames that are both realistic 055
and different from existing scenes. The result is a generative 056
data augmentation technique that outperforms state-of-the- 057
art approaches by a large margin, with a performance boost 058
of up to 2× w.r.t. the best competing approach (+1.4 vs. 059
+0.7 mAP boost). By modifying the inpainting model to pro- 060
duce both RGB and instance masks, we further demonstrate 061
substantial gains in the instance segmentation setting. 062

In summary, our contributions are the following: 063

• We propose a scene-aware probabilistic location model 064
that augments street scene layouts by placing new objects 065
in realistic locations. 066

• We combine our location model with an inpainting dif- 067
fusion model to produce augmented frames for object 068
detector training, where our performance boost is up to 069
2.8× higher compared to state-of-the-art approaches. 070

• By enabling the diffusion model to predict instance masks 071
for generated objects, we further demonstrate substantial 072
performance gains on instance segmentation. 073
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Figure 1. An original scene (top left) and three augmented frames using different location modeling and augmentation strategies. Generated
objects are indicated by green bounding boxes. Our approach proposes locations that fit the original scene, resulting in novel compositions
with high visual realism and challenging occlusion cases. Approaches that reuse original locations, even with minor modifications such as in
GeoDiffusion [6], generate frames with visual appearance diversity but limited location diversity. Approaches that add objects in random
locations such as X-Paste [49] disregard the realism of the resulting layout and, in turn, of the generated frames.

2. Related Work074

Generative data augmentation. The use of synthetic in-075
stances to augment training data for vision tasks has recently076
become a common strategy [1, 15, 39, 48]. For object detec-077
tor augmentation specifically, synthetic objects need to be078
rendered precisely in specified locations in a frame. Most079
works reuse object locations from real data [27, 36], change080
only the background while leaving objects intact [30], or081
perform minor modifications such as translation or removal082
of bounding boxes [6, 13, 14]. The focus of these works is083
therefore mostly on improving the realism of generated data.084

Another popular augmentation strategy is “cut-and-085
paste” [11]: placing segmented or generated objects in real086
backgrounds in random locations. Cut-and-paste approaches087
have shown to be very effective in both object detection088
and instance segmentation [12, 15, 40, 49], despite the low089
realism of the resulting image. These results indicate that090
adding new objects in new locations may be just as impor-091
tant as creating realistic images, echoing earlier findings [10].092
Our work achieves both by adding new objects in realistic093
locations to augment frames.094

Layout generation and location modeling. Predicting ob-095
ject locations is related to layout completion and generation.096
Dedicated methods typically solve these tasks by modeling097
interactions at the bounding box level without additional098
context [16, 22, 23, 26, 41], and are usually applied to de-099
sign documents or other highly structured data. Approaches100
that take scene information into account to determine ob-101

ject locations do exist [45, 51], but often require paired 102
training datasets of (empty) images and feasible object place- 103
ments, which are not readily available for automotive scenes. 104
They may also require an image of the segmented object to 105
place [46, 51], or have only been shown to work for specific 106
object categories such as cars and pedestrians [29]. In this 107
work, we instead want to determine the location before such 108
an object is available. Finally, some approaches reason about 109
object locations in 3D space [9, 24, 37], but this requires 110
detailed 3D annotations, which are usually much harder to 111
obtain than 2D annotations. 112

3. Method 113

Our goal is to augment street scenes by determining where 114
new objects can be placed. Using these locations, we aug- 115
ment frames for detector training, as illustrated in Fig. 2. We 116
first describe our proposed scene-aware location model, a 117
probabilistic approach that factorizes the likelihood of new 118
object locations into a sequence of simple conditional likeli- 119
hoods. We then describe our strategy to render these objects 120
into the existing scene to obtain augmented frames. 121

3.1. A factorized scene-aware location model 122

Each generated object is described by a class label c and a 123
2D bounding box b specifying its location and dimensions in 124
the given scene. The procedure for placing a new object into 125
an existing scene can be thought of as a two-step process: 1) 126
decide what object to place and 2) determine where to place 127
it (and what size it should have). 128
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Figure 2. Overview of our augmentation pipeline. (A) We first use the location model to predict realistic bounding box locations for new
objects, using depth and drivable space segmentation. (B) We then generate an object and corresponding instance mask using an inpainting
model. (C) This allows us to create pseudo-labels for object detection and instance segmentation. Our approach scales to high resolution
images, and creates realistic and challenging occlusion cases.
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Figure 3. (Top) Our location model factorizes object placement
into a series of conditional likelihoods, each of which is easy to
approximate or parametrize. (Bottom) We sample a desired distance
to the object, d, and determine admissible locations for this depth
(red lines are two separate examples of such placement bands).

We make these choices explicit in a likelihood model p̂129
that approximates the true probability density p of object130
categories, locations and scales. Since the distribution of131
plausible object placements is highly dependent on the con-132
straints imposed by the given scene, we condition our model133
on high level scene descriptions. Specifically, we assume to134
have scene representations in the form of a depth map D and135

a drivable space semantic map1 S. The depth map tells us 136
something about the structure of the 3D scene and distance 137
to existing objects, while the semantic map tells us exactly 138
where the ground plane is. 139

We are now interested in predicting plausible objects and 140
their locations. We approximate the likelihood of class c, the 141
distance to the object d, and bounding box center, height and 142
width (bx, by, bw, bh) by factorizing it as follows: 143

p(c, bx, by, bw, bh, d |D,S) ≈ 144

p̂(bw|bh, c) p̂(bh|d, c) p̂(bx, by|d,D,S) p̂(d|c) p̂(c), (1) 145

where d is a sampled depth value, used only as an inter- 146
mediate variable. The corresponding graphical model is 147
visualized in Fig. 3. This factorization is chosen such that 148
individual terms in Eq. (1) are easy to approximate with 149
empirical or simple parametric distributions. Using these 150
approximations, we can use ancestral sampling to generate 151
realistic object location proposals for the scene: 152
1. Sample a class. We first sample a class from the multino- 153

mial p̂(c), which we choose to have uniform probabilities 154
to oversample rare classes. 155

2. Sample a depth. To sample objects at realistic distances, 156
we collect observed object depths per class from training 157
data, and approximate p(d|c) with a log-normal distribu- 158
tion. In comparison, we observed that directly choosing 159

1We define semantic categories “road”, “terrain”, “sidewalk” to be
drivable space, as this is where objects of interest typically appear.
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truckcar pedestrian traffic cone

Figure 4. Example bounding box proposals from our location model, separated by class.

a random location in the drivable space would result in160
oversampling of objects at short distances.161

3. Sample a location. Using semantic map S and depth162
map D we select bx, by uniformly at random from the163
scene’s drivable space, limited to locations with depths164
that are within a threshold τd to the sampled distance d.165
Fig. 3 shows examples of such “placement bands”.166

4. Sample a height. We collect statistics of object heights167
at different depth intervals, and approximate them with168
log-normal distributions p̂(bh|d, c).169

5. Sample a width. We collect aspect ratios of objects,170
independent of depth, and use the resulting empirical171
distributions (i.e. the histograms) for sampling object172
widths bw ∼ p̂(bw|bh, c).173

Examples of boxes generated by our model are shown in174
Fig. 4. We provide more details on the steps and evaluate the175
quality of the approximations in the supplementary material.176

3.2. Generative augmentation177

In the previous section we introduced a probabilistic loca-178
tion model that places new objects, parametrized by class179
and bounding box, into an existing scene (Fig. 2 (A)). In180
order to render the desired objects, we use a diffusion model181
for inpainting, namely Stable Diffusion 2 (SD2)2 [34]. As182
operating at high resolution with diffusion models is not183
straightforward, we extract square patches centered in the184
proposed locations. Every patch has a resolution of m×m185
pixels, where m = 2×max(bh, bw), and is resized to a fixed186
resolution of 512 × 512 for inpainting. Examples of such187
patches are shown in Fig. 2 (B). Prior work utilizes large188
language models to craft complex textual descriptions [39],189
but we found that simple text prompts in the format “image190

2https : / / huggingface . co / stabilityai / stable -
diffusion-2-inpainting

of a <class name>” are sufficient for realistic gener- 191
ations. We finetune the diffusion model on the domain of 192
interest, for which we tried both direct finetuning and Con- 193
trolNet [47]. We report scores with ControlNet, but the two 194
options perform on par (see Appendix). Finetuning benefits 195
the inpainting model in three ways. First, it allows it to 196
adapt to the pixel-level statistics of the target dataset, i.e. to 197
generate objects that look natural in terms of saturation and 198
contrast. Second, it resolves ambiguities in textual category 199
labels: for example, the class “rider” can be interpreted by 200
SD2 as “horse rider”, whereas in the BDD100K dataset it 201
represents only “motorcycle riders”. Third, finetuning forces 202
objects to fit more tightly in the provided bounding box. We 203
show examples of this in the Appendix. 204

Obtaining object masks. To augment data for instance 205
segmentation tasks, we need instance masks for every syn- 206
thetic object. To this end, we equip the inpainting model 207
with a simple mask decoding module M, responsible for 208
providing a segmentation mask for the objects it generates. 209

The mask decoder M is created as a lightweight copy of 210
the SD2 UNet-decoder, with 4x fewer channels per layer. It 211
receives multi-scale features from the SD2 UNet-encoder 212
as input, as its representations are rich in semantic infor- 213
mation about objects being generated [39, 48]. Specifically, 214
whenever generating an object, we pass the “denoised” la- 215
tent variable z0 to the UNet and extract representations 216
{r1, r2, . . . rd} at multiple resolutions, before each down- 217
sampling layer in the architecture. These features then un- 218
dergo a simple multi-scale aggregation phase, before being 219
fed to M to decode an alpha mask ŝ. To train M, we assume 220
access to crops with available groundtruth instance masks 221
s and optimize a simple binary cross-entropy loss. More 222
details are given in the Appendix. 223
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Figure 5. Example of nuImages frames augmented with our approach. We show the bounding boxes for all added objects. In diverse
scenarios, the location and scale of added objects are realistic and thus result in realistic augmented images.

Besides enabling instance segmentation augmentation,224
we found that these masks allow more realistic handling225
of occlusions between generated objects, without artifacts226
(see Fig. 2 (C), occlusion between bus and barrier). More-227
over, it allows us to refine the bounding box size in the case228
the inpainting model generates an object that is smaller than229
the input bounding box. We provide more details on mask230
decoding in the supplementary material.231

4. Experiments232

In this section we present experimental results for generative233
data augmentation. We show main experiments in Sec. 4.1,234
where we augment data for both object detection and in-235
stance segmentation. We then investigate the influence of236
different design choices in more detail in Sec. 4.2.237

Datasets and evaluation. We conduct experiments on238
two public automotive object detection benchmarks: nuIm-239
ages [2] and BDD100K [44]. The nuImages dataset contains240
67.279 training images and 16.445 validation images, at res-241
olution 1600 × 900. It is published by Motional AD Inc.242
under a CC BY-NC-SA 4.0 license. The BDD100K dataset243
contains 70.000 training and 10.000 validation images, at244
resolution 1280×720. To compare data augmentation strate-245
gies, we always use all available real training images and246
equally many augmented frames during each training epoch.247
Following standard practice, we evaluate object detectors248
through the mean Average Precision (mAP) on real vali-249
dation images. For object detection experiments we use a250
Faster R-CNN [33] with a ResNet-50 backbone (pretrained251
on ImageNet [8]). For instance segmentation experiments,252
we use a Mask R-CNN [18] with the same backbone.253

Baselines. To measure the effectiveness of our location 254
model, we compare against two baselines that use the same 255
generator (as described in Sec. 3.2), but use a different place- 256
ment strategy. The first baseline re-uses the original object 257
locations, i.e. it generates instances in existing locations, ef- 258
fectively replacing original objects with synthetic ones. This 259
approach is similar to prior work on object detector augmen- 260
tation [27, 36]. The main differences are that Gen2Det [36] 261
uses an unspecified closed-source diffusion model, whereas 262
Kupyn and Rupprecht [27] use additional depth and edge 263
conditioning for generation. We refer to this baseline as 264
“Replacement” in the following. The second baseline adds 265
new objects in random locations, independently of the scene, 266
which we call “Random Loc.”. For the latter, bounding box 267
sizes follow the training distribution, while the locations are 268
uniformly sampled in the frame. 269

Additionally, we compare to two state-of-the-art augmen- 270
tation methods. X-Paste [49]—a reference work in cut-and- 271
paste augmentation—generates synthetic objects with Stable 272
Diffusion [34], segments them, and then pastes them on an 273
existing frame with random location and scale. We use the 274
publicly released code3 to generate 100.000 objects, and we 275
paste up to 10 per frame, selected at random. We further 276
compare to results reported by GeoDiffusion [6], a layout- 277
to-image method that renders synthetic frames from slightly 278
perturbed object locations. For this model, we report metrics 279
from the original publication, as the authors only released 280
inference code and lower-resolution models. Finally, we 281
also reimplemented background augmentation from [30], 282
but only observed negative augmentation performance, so 283
we provide those results in the supplementary material. 284

3https://github.com/yoctta/XPaste
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Table 1. Augmenting Faster R-CNN object detection on nuImages. While all augmentation methods improve over the base model, our
proposed data augmentation with layout augmentation outperforms the other methods by a significant margin. “Replacement” is similar to
[27, 36]. The bottom row shows the percentage of instances belonging to each category in real training frames.

Locations mAP car truck trailer bus const. bicycle motor. ped. cone barrier

Baseline - 37.8 53.6 41.8 17.2 43.1 25.5 45.4 46.9 32.0 32.8 39.3
Replacement original 38.5 +0.7 54.2 43.3 17.7 44.5 26.1 46.1 47.8 32.2 33.1 40.1
Random Loc. random 38.2 +0.4 53.4 42.8 15.8 44.6 27.0 46.4 48.4 31.5 32.6 39.4
X-Paste [49] random 38.2 +0.4 53.7 42.9 16.0 44.1 26.4 46.4 48.7 31.8 32.7 39.5
GeoDiffusion [6] original 38.3 +0.5 53.2 43.8 18.3 45.0 27.6 45.3 46.9 30.5 32.1 39.880

0×
45

6

Ours scene-aware 39.2 +1.4 53.9 44.0 18.6 46.1 27.7 47.0 49.4 32.0 32.9 39.9

Baseline - 50.4 66.4 55.5 21.7 55.9 35.0 55.6 58.2 49.7 54.2 51.8
Replacement original 50.7 +0.3 66.8 55.4 22.9 56.5 34.7 55.3 58.9 49.6 54.3 52.1
Random Loc. random 51.3 +0.9 66.4 56.3 23.0 58.0 36.4 56.8 60.2 49.7 54.8 51.3
X-Paste [49] random 51.5 +1.1 66.9 56.7 23.6 58.0 35.9 57.0 60.3 50.0 54.7 52.2
GeoDiffusion [6] original – – – – – – – – – – –16

00
×

90
0

Ours scene-aware 52.0 +1.6 66.9 56.9 25.3 58.8 37.5 57.1 60.7 49.8 54.9 52.6

Real data [%] 37.1 5.4 0.6 1.2 0.9 2.5 2.5 24.4 12.6 12.8

Implementation details. We augment frames by generat-285
ing 12 new objects per frame, and randomly showing each286
with 0.5 probability whenever the frame is chosen during287
training. For the inpainting model, we finetune for 300,000288
iterations at a batchsize of 16, using ControlNet [47] with289
masked crops as conditioning input. All detector trainings290
are performed using the mmdetection library [5] and the de-291
fault configurations, except for the number of training epochs292
that is set to 36 for all datasets and models. To enable a fair293
comparison to GeoDiffusion on nuImages, we follow the294
protocol in the original paper and further train (and evaluate)295
the detector at a reduced resolution (800× 456 pixels); for296
this experiment exclusively, we reduce the number of epochs297
to 12 to match their setup. When training on BDD100K we298
do not augment the traffic sign and traffic light categories, as299
our location model is better suited for objects on the ground.300
The mAP is however computed on all classes. For our scene-301
aware location model, we extract scene representations from302
off-the-shelf models for depth estimation [42] and semantic303
segmentation [43]. We train our mask decoder on nuImages,304
as the dataset provides precise instance masks.305

4.1. Training data augmentation306

Object detection on nuImages. We first analyze the per-307
formance of different augmentation strategies for object de-308
tection on nuImages, for which we report both mAP and309
class specific scores in Tab. 1. Examples of augmented310
frames from our method are shown in Fig. 5. Although all311
augmentation methods improve over the baseline (trained on312
real data only), we can make the following observations.313

At low resolution (800 × 456), methods using random314
locations improve mAP marginally (up to +0.4 points),315

whereas techniques leveraging original locations prove more 316
successful (up to +0.7 points). This is especially true for 317
classes like pedestrian, cone and barrier, which are gen- 318
erally smaller than other objects and therefore harder to 319
detect: diversifying their appearance while keeping the lo- 320
cation unchanged clearly helps detector training. However, 321
this observation is reversed at full resolution, where the re- 322
placement strategy underperforms with respect to random 323
locations. In both cases, our augmentation method proves 324
to be the best approach, significantly increasing the mAP 325
of the detector by 1.4 and 1.6 in low and high resolution, 326
respectively. 327

Looking at per-category results, we can see how our 328
approach improves the most on classes that are under- 329
represented in the dataset, such as trailer (0.6% of training 330
instances), construction vehicle (0.9%), bus (1.2%), bicycle 331
(2.5%) and motorcycle (2.5%). In contrast, strategies relying 332
on original object locations (e.g. replacement) tend to work 333
well on categories that are already well represented in the 334
training data, such as car and pedestrian. This is likely due 335
to the fact that they cannot easily oversample rare classes, 336
unlike our method and approaches that use random locations. 337
This finding suggests that approaches that allow oversam- 338
pling of rare classes, such as ours, are the superior choice for 339
problems where categories follow a long-tailed distribution. 340
Arguably, this applies to many real-world problems. 341

Instance segmentation on nuImages. Next, we test our 342
approach on instance segmentation, by using the strategy 343
described in Sec. 3.2 to obtain pseudo-groundtruth masks for 344
synthetic objects. We compare our method to replacement 345
and random locations by assessing mAP both on bounding 346
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Table 2. Augmenting Mask R-CNN instance segmentation and detection on nuImages at full 1600× 900 resolution. All approaches use the
same inpainting strategy and only differ by the locations in which objects are inpainted to the scene.

Locations Bounding box evaluation Instance mask evaluation
mAP mAP50 mAP75 small med. large mAP mAP50 mAP75 small med. large

Baseline - 51.2 77.8 55.8 31.3 49.5 64.2 41.5 71.2 42.2 19.6 40.5 57.6
Replacement original 51.5 +0.3 77.9 56.1 31.4 50.0 64.6 41.6 +0.1 71.6 42.3 19.7 40.8 57.8
Random Loc. random 51.9 +0.7 77.9 56.2 31.0 50.2 65.2 42.1 +0.6 71.9 42.9 19.4 40.9 58.3
Ours scene-aware 52.6 +1.4 78.8 57.0 31.1 50.8 66.1 42.4 +0.9 72.4 43.1 19.4 41.0 58.9

Table 3. Faster R-CNN object detection augmentation results on BDD100K at full 1280× 720 resolution.

Locations mAP ped. rider car truck bus train motor. bicycle tr.light tr.sign

Baseline - 31.4 34.5 26.3 50.8 46.2 46.9 0.0 24.6 25.9 21.9 37.1
Replacement original 31.6 +0.2 34.4 26.5 51.1 46.2 48.4 0.0 24.9 25.5 21.7 36.8
Random Loc. random 32.1 +0.7 34.6 27.2 51.0 47.3 48.9 0.0 25.9 26.8 22.1 37.0
X-Paste [49] random 32.3 +0.9 34.8 27.5 50.9 47.9 49.2 3.4 24.9 26.5 21.8 36.6
Ours scene-aware 32.7 +1.3 35.0 28.0 51.2 47.6 49.9 0.8 27.6 27.9 21.9 37.1

boxes and on instance masks, and we report results in Tab. 2.347
Our approach outperforms both baselines in both metrics,348
highlighting the benefit of scene-aware location modeling.349
The baselines differ from our approach only in the chosen350
object locations, while the generation model is the same.351

We also observe that the performance on small objects352
remains largely unchanged, regardless of the augmentation353
method. Moreover, the improvement over the baseline of-354
fered by our method seems to increase with object size. A355
potential reason for this behavior is that small objects are356
more common in the real data, leaving less room for im-357
provement compared to the relatively rare large objects. The358
bottom row of Tab. 1 shows the distribution of object counts359
in the data.360

Object detection on BDD100K. We repeat the object de-361
tection augmentation experiment on the BDD100K dataset,362
and report results in Tab. 3. Overall, the table shows lower363
scores than on nuImages, and we ascribe this behaviour to364
BDD100K being a more challenging dataset (e.g. it includes365
data filmed through the windshield and thus it shows a lot of366
reflections and dirt). Scene-aware location modeling again367
outperforms both replacement and random location strate-368
gies, improving the baseline detector by 1.3 points in mAP369
(31.4 → 32.7).370

X-Paste also performs reasonably well on this dataset, and371
it notably outperforms our method in the train category. We372
believe this result is due to the scarcity of data for this class,373
which features only 15 instances in the validation set, and for374
which the AP is extremely low for all methods. We suspect375
that in such extreme long-tailed cases the high diversity376
of generated objects offered by X-Paste might prove more377
beneficial than realistic placement and generation.378

4.2. Ablations 379

We use this section to investigate the influence of individ- 380
ual model components and design choices. The results are 381
compiled in Tab. 4, we address them one-by-one. 382

Finetuning. First, we ablate the decision to finetune the in- 383
painting model on the target dataset, for which we explored 384
both direct finetuning and ControlNet [47] (see Appendix 385
for a comparison). While the SD2 base model sometimes 386
creates convincing objects, we find that on average, finetun- 387
ing leads to a) better visual coherence with the surroundings 388
and b) objects that better fill the provided bounding box. 389
We show visual examples in the Appendix. Consequently, 390
performance without finetuning is much lower, and hardly 391
improves over the baseline model. We leave an exploration 392
of other finetuning techniques [21, 32] for future work. 393

Mask prediction, SAM masks. At inference time, we 394
generate objects and masks jointly. This is not strictly neces- 395
sary for detector augmentation, and mainly serves to extend 396
our approach to instance segmentation. However, we can 397
also use the generated masks to refine the bounding boxes 398
and improve foreground-background blending. The effect 399
is strongest at high IoU thresholds (see Appendix), but it 400
significantly influences mAP as a whole. Interestingly, using 401
SAM [25] to extract segmentation masks for generated ob- 402
jects works only slightly less well at low resolution, but leads 403
to a large performance drop at full resolution. We suspect 404
that even though SAM was trained for broad applicability, 405
there is still a distribution mismatch, and our model benefits 406
from nuImages training. While this could be remedied with 407
finetuning SAM, our mask decoder is orders of magnitude 408
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Table 4. Ablation of the effect of design choices in our approach
on Faster R-CNN detector performance (mAP) on nuImages.

800×456 1600×900

Baseline 37.8 50.4
Ours 39.2 52.0

without finetuning 37.9 -1.3 50.8 -1.2

without mask pred. 38.7 -0.5 51.4 -0.6

with SAM masks 39.0 -0.2 51.4 -0.6

model loc., rand. scale 38.6 -0.6 51.6 -0.4

rand. loc., model scale 38.5 -0.7 51.6 -0.4

X-Paste [49] 38.2 51.5
with our location model 38.4 +0.2 51.6 +0.1

smaller than it (we use the sam-vit-huge checkpoint here).409
This result highlights the benefit of leveraging the diffusion410
model representations for mask generation.411

Randomizing location or scale. To understand if object412
locations or object scales are more important, we perform413
two sets of experiments: one samples the object location414
according to our model, but samples the scale uncondition-415
ally from the empirical data distribution; the other samples a416
location uniformly at random, but samples the scale accord-417
ing to our model (conditioned on the location). We find that418
the augmentation gain in each case is roughly half of our419
model’s total, indicating that location and scale are equally420
relevant, and that both need to be realistic to achieve an421
optimal performance gain.422

Combining our location model and X-Paste. The pur-423
pose of our location model is to allow placing objects in a424
realistic context within a given scene. It is intuitive that good425
locations and scale matter here, as the inpainting model can426
take advantage of these and e.g. create challenging occlusion427
scenarios, but it may perform less well if locations are un-428
realistic. An open question is whether improving locations429
has a similar effect on cut-and-paste type approaches. Since430
X-Paste [49] pastes pre-generated objects into the frames431
ignoring the context entirely, the realism of their scale or432
location should not matter. Surprisingly, we still see a small433
performance boost when combining our location model with434
X-Paste. However, augmented frames still appear entirely435
unrealistic, and the performance gain may only be due to an436
improved location and scale bias of the detector.437

Additional analyses. In the supplementary material, we438
attempt to quantify the realism and diversity of augmented439
frames, where our method yields numbers that are compa-440
rable to adding completely new data. We further analyze441
the effect of bounding box refinement, where we use the442

predicted instance masks to refine bounding boxes. While 443
negligible at lower IoU thresholds, this has a significant 444
influence at high thresholds. Finally, we show examples 445
of failure modes, which occur when the depth or drivable 446
space predictions are incorrect, or for more complex scene 447
geometries. 448

5. Conclusions 449

In this work, we demonstrate that generative data augmenta- 450
tion benefits from adding objects in new and realistic loca- 451
tions. We first propose a scene-aware probabilistic location 452
model that predicts new object locations for existing scenes. 453
To fully take advantage of this location model, we then adapt 454
a diffusion model to jointly inpaint objects in the proposed 455
locations and to produce instance masks for them. Using this 456
approach, we are able to generate realistic and challenging 457
augmented frames, e.g. with object occlusions, which set a 458
new state of the art in data augmentation for object detectors 459
on two street scene datasets, outperforming the mAP gains 460
achieved by existing methods by a large margin. We also 461
demonstrate significant gains in data augmentation for in- 462
stance segmentation. Crucially, using the same augmentation 463
strategy but with completely random object placement, or 464
only reusing existing object locations, performs much worse 465
than our approach, highlighting the benefit of augmentation 466
that places objects in new and realistic locations. 467

Limitations. The probabilistic factorization of our loca- 468
tion model takes advantage of the high regularity of street 469
scenes. We suspect that more for diverse scenes, as for ex- 470
ample in COCO [31], a fully learned location model may be 471
required. At the same time, we expect that a more advanced 472
object placement strategy would improve performance even 473
further. Our location model is also somewhat tied to the 474
augmentation strategy, it requires an inpainting model to 475
fully take advantage of the predicted locations. The benefit 476
for cut-and-paste approaches is limited. It also depends on 477
the quality of the depth estimation and the segmentation of 478
drivable space (we show failure cases in the Appendix). 479

An opportunity for future work is combining the augmen- 480
tation approaches discussed in this work. In particular, object 481
replacement, full-frame synthesis, and our object placement 482
in new locations are in principle complementary. However, 483
identifying the right way to combine synthetic data from 484
these sources is a non-trivial problem [36]. Finally, we ex- 485
pect all generative data augmentation to improve with the 486
quality of the underlying generator. We test our approach 487
using only Stable Diffusion 2 [34], as it is a commonly 488
used open-source model, but other promising open-source 489
or open-weight models have been released since [4, 28]. As 490
generative models progress, generative data augmentation 491
will likely play an increasingly important role in the training 492
of task-specific models. 493
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Scene-Aware Location Modeling for Data Augmentation
in Automotive Object Detection

Supplementary Material

A. Method Details727

A.1. Location model728

In this section we provide more details in our location model,729
specifically the individual sampling steps and how we ap-730
proximate the corresponding likelihoods. The accompanying731
figure is Fig. 7, where we show “car”, “bus”, and “pedes-732
trian” as representative classes, using data from the front733
camera in the nuImages dataset (nuImages uses 6 cameras,734
and we treat them separately).735

Depth sampling We use DepthAnything [42] as an off-the-736
shelf depth estimator. While the model technically outputs737
what the authors call disparity (disparity ∝ 1/depth), we738
still refer to it as depth, as we believe our description is easier739
to understand this way. Figure 7a shows depth histograms for740
the three classes, along with the log-normal approximation741
we use. We prefer an easy-to-use parametric distribution over742
one that optimizes data fit, and in this case a log-normal is743
clearly a good enough choice. Note that larger depth values744
are closer to the camera, so most objects are comparatively745
far away.746

Location sampling Once we have sampled a depth value,747
we select all pixels from the drivable space which are within748
τd = 5 of this value. This typically results in a band of749
possible locations, two examples of which are shown in750
Fig. 7b. We then select a pixel from this band at random751
and use it as the bottom-center location for the bounding752
box. Should no pixels in the drivable space be within the753
allowed depth interval, we reset the depth value to the closest754
allowed one. By first sampling the depth, and only then a755
location from the resulting band, we avoid oversampling756
close objects, because logically there are more pixels closer757
to the camera than further away.758

Height sampling Sampling the height is arguably the most759
complicated part in our model, as it is conditioned on the760
depth. Figure 7c shows example histograms at different761
depths. We also approximate these with log-normals, but762
the approximation is clearly not as good as in the case of763
the depth. Nevertheless, we find that on average it results in764
realistic object heights. To get the mean µh(d) and standard765
deviation σh(d) of the log-normal for a given depth, we766
build such histograms for all possible disparities, evaluated767
in windows of width 2, and then calculate the parameters768
in each case (i.e. the mean and standard deviation of the769

log-data). We then fit a simple parametric model of the 770
form y = a + b · xc to be able to interpolate mean µh(d) 771
and standard deviation σh(d) for a given depth at sampling 772
time. The interpolation is visualized in Fig. 7d and fits the 773
data fairly well. Only at high depth values, i.e. close to the 774
camera, do we find significant deviation from the underlying 775
data. As these depths have very low likelihoods anyway, we 776
accept this tradeoff. 777

Width sampling We sample the width conditioned on 778
the height via the distribution of aspect ratios for the given 779
class, visualized in Fig. 7e. These are independent of the 780
depth. Unfortunately, the aspect ratio histograms follow a 781
more complex pattern, and we were unable to find a good 782
parametric approximation. This is likely due to objects living 783
in 3D space with almost arbitrary rotations (in terms of 784
yaw), whereas we only work with 2D bounding boxes. This 785
effect is very pronounced for cars and buses, but less so for 786
pedestrians. As a result, we use the empirical likelihoods 787
directly, i.e. the histogram bins are normalized to sum to 788
1 and then taken as likelihoods for the corresponding bin 789
intervals. 790

A.2. Mask generation 791

As mentioned in Sec. 3.2, we design a simple mask decoding 792
module M to plug into the SD2 inpainting model, respon- 793
sible for creating segmentation masks for every generated 794
object. As explained in the main text, its architecture is mir- 795
roring the one of the image (VAE) decoder, with two notable 796
exceptions. First, all its layers feature 4x fewer channels, as 797
we assume that decoding a binary mask requires a lot less 798
capacity than to decode an RGB image. Secondly, it does 799
not use the clean latents z0 directly, but rather multi-scale 800
features from the encoder part of the SD2 UNet, generated 801
by feeding z0 to it. This step is akin to running the SD2 802
denoiser for an additional diffusion step, and extracting rep- 803
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Figure 6. Representation of the multiscale aggregation module for
feeding multi-scale UNet features to the proposed mask decoder.
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(a) Depth histogram for three representative classes, along with the log-normal approximation we use. Note that the depth
estimator we use outputs values where higher means closer to the camera.
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(b) Example frame with depth map and drivable space. We first draw a depth value and then select an area from the drivable
space that is within a threshold τd = 5 around that value. This results in placement bands from which a location is selected at
random.
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(c) Height histogram for three representative classes, and three example depth ranges. We also approximate the resulting
height distributions with log-normals.
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(d) To be able to parametrize a height distribution, given a depth value, we compute mean and standard deviation of height
histograms for different depths in the dataset (using a window size of 2). We then fit a curve to approximate µh(d) and σh(d).
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(e) We get the object width for a given height via the aspect ratio. Because we could not find a satisfactory parametric
distribution, we work with the empirical distributions directly, in this case.

Figure 7. Overview of the different sampling steps in our location model, and what approximations we use.
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constr. vehicle

traffic cone

A B C

Figure 8. Producing object masks is crucial for seamless inpainting. (A) Two example generations and their original inpainted areas. (B)
Pasting the synthetic objects back in the frame by using bounding boxes as masks can result in severe boundary artifacts, especially in the
case of occlusions. (C) Using generated instance masks yields more realistic results.

resentations from several layers in its UNet (specifically, all804
downsampling layers). Given the fact that the input to the805
M is not a tensor but rather a set of tensors at different806
resolutions (which we name {r1, r2, . . . , rd}), we run a sim-807
ple multi-scale aggregation module (represented in Fig. 6),808
which upscales all features to the same resolution and con-809
catenates them.810

We train our mask decoder on nuImages, as all its labeled811
objects come with an instance mask that we can use for812
supervision. We optimize M after the finetuning stage of813
SD2, and observed no benefits in training both jointly. As814
BDD100k does not provide any segmentation masks, we815
use the mask decoder trained on nuImages when generating816
objects for this dataset. We observed that generated masks817
are of comparable quality, even for unseen classes that are818
not available in nuImages (such as ‘rider’ and ‘train’).819

Besides providing pseudo-labels for instance segmenta-820
tion augmentation, the masks decoded by the mask decoder821
prove useful in the case generated objects occlude them-822
selves. Consider, for instance, the case represented in Fig. 8,823
where instances of a construction vehicle and of a traffic cone824
are generated independently, in close locations. When past-825
ing the crops back to the original frame using full bounding826
box areas, it is impossible to avoid visible artifacts. How-827
ever, by using precise pixel masks, occlusions are handled828
successfully, increasing the overall realism of the augmented829
frame. We believe such cases are one of the main factors830
explaining the drop in mAP that we observe when not using831
masks, as reported in Tab. 4 and Fig. 10.832

B. Additional Results & Examples833

B.1. Realism and diversity834

In this section, we evaluate and compare the realism and835
diversity of frames augmented with our method and other836
methods, as these aspects are often mentioned as key factors837
for good data augmentation performance [10, 36]. Here,838
realism refers to the visual quality of augmented samples,839
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Figure 9. Pretrained MaskRCNN mAP vs. FID between edited and
unedited frames. High mAP indicates high realism, high frame FID
indicates high frame variability.

whereas diversity describes how different augmented frames 840
are from the already available training frames. We argue that 841
the current methods relying on original or random object 842
locations maximize one aspect while neglecting the other: 843
generating from original locations guarantees realistic scene 844
composition, yet variations are limited to visual appearance, 845
whereas using random locations yields very diverse scene 846
layouts and scale for new objects, at the expense of realism. 847

This can be seen qualitatively in the examples in Fig. 1. 848
To measure the realism of augmented frames quantitatively, 849
we adopt the approach of GeoDiffusion [6] and evaluate 850
a pretrained Mask R-CNN4 on the augmented frames. To 851
measure diversity, we compute the FID between paired sets 852
of unedited and edited full frames, using 1000 images for 853
both. A method that does not change the data at all should 854
obtain a FID score of zero, and a method that produces high 855
diversity samples should obtain higher FID. Importantly, 856
generating unrealistic frames (e.g. random noise) can result 857
in very high FID scores: as such, we argue that the optimal 858

4The ImageNet-pretrained R-50 model from mmdetection3d [7].
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Figure 10. We use predicted instance masks to refine bounding
boxes of inpainted objects. The graph shows the relative mAP
improvement (on nuImages, full resolution) of this step, compared
to not performing it, for different IoU thresholds. Up to a threshold
of ca. 0.75 there is hardly a difference, but at higher thresholds this
refinement results in up to 23% improvement.

value for this diversity metric is not necessarily the lowest859
or highest score, but rather a score that is comparable to that860
achieved by a different set of real frames.861

Figure 9 shows realism and diversity scores for several862
augmentation methods. The replacement baseline achieves863
low frame FID and high mAP: the augmented frames are864
realistic, but hardly changed. GeoDiffusion and X-Paste865
have much higher frame FID, meaning they add a lot of866
diversity, but this comes at the price of lower realism. GeoD-867
iffusion likely obtains high frame FID because it generates868
both background and objects. Our approach changes parts869
of the scene but it leaves other areas of the frame untouched,870
and achieves high realism according to the pretrained detec-871
tor. Importantly, it achieves comparable frame FID to a set of872
Real data, meaning our augmented frames are as dissimilar873
to the originals as a set of new real frames. We argue that874
this is a very good operating point in the realism-diversity875
tradeoff. Finally, we see that the mAP of the random loca-876
tion baseline is similar to that of X-Paste (which also uses877
random locations), but with lower frame FID. We suspect878
that this is because the inpainting model sometimes struggles879
to generate objects in unrealistic locations, and instead just880
completes the crop to look realistic.881

B.2. Effect of bounding box refinement882

We adapt the inpainting model so that it also predicts in-883
stance masks for the generated objects. We use these masks884
to refine the bounding boxes, so that they fit the generated ob-885
jects more closely, which leads to a significant performance886
improvement (see ablations in Tab. 4). As one might expect,887
this bounding box refinement has a stronger influence when888
the the IoU threshold for a successful detection is higher. In889

Figure 11. Comparison of finetuning with ControlNet (ours, left
column) and using the SD2 pretrained inpainting checkpoint (right
column). With finetuning, generated objects will often blend better
with the surroundings in terms of color and saturation (top row).
Without finetuning, the generator will sometimes not produce and
object at all (middle row), or one that doesn’t fully fill the provided
bounding box (bottom row).

Fig. 10 we show the mAP of an augmented Faster R-CNN 890
on nuImages (full resolution) for different IoU thresholds. 891
Up to a threshold of around 0.75 there is hardly a differ- 892
ence between refined and normal bounding box use. But at 893
higher thresholds the effect becomes more apparent, with an 894
improvement of 23% at the highest threshold 0.95. 895

B.3. Effect of finetuning 896

We choose to finetune the SD2 inpainting model [34], for 897
which we tried both direct finetuning and ControlNet [47] 898
and observed similar performance (see Tab. 5, results in this 899
work are from ControlNet). While we expect that other meth- 900
ods of finetuning [21, 32] work similarly well, we showed 901
in the ablations that finetuning in general has a strong effect 902
on augmentation performance. Examples of the main dif- 903
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Table 5. Further results for Faster R-CNN augmentation on nuImages (800 × 456). As there is no public code available for [30], we
reimplemented the method.

Locations mAP car truck trailer bus const. bicycle motor. ped. cone barrier

Baseline - 37.8 53.6 41.8 17.2 43.1 25.5 45.4 46.9 32.0 32.8 39.3
Background [30] original 36.6 -1.2 53.0 41.9 13.6 42.1 23.9 43.7 46.3 30.0 31.7 39.4
Ours (ControlNet) scene-aware 39.2 +1.4 53.9 44.0 18.6 46.1 27.7 47.0 49.4 32.0 32.9 39.9
Ours (direct FT) scene-aware 39.2 +1.4 54.1 44.2 19.5 45.7 27.4 46.9 49.5 31.7 32.8 39.8

Figure 12. Examples of background augmentation [30].

ferences we observe are shown in Fig. 11. In many cases,904
with finetuning the generated objects visually fit their context905
better, i.e. they have more realistic colors and saturation (top906
row in Fig. 11). We also find that in a significant number of907
cases, the non-finetuned model doesn’t produce an object at908
all, instead just completing the area to look realistic (middle909
row in Fig. 11). In other cases, the non-finetuned model910
does produce an object, but it only fills part of the provided911
bounding box, whereas the finetuned model tends to fill the912
desired box almost fully (bottom row in Fig. 11).913

B.4. Further ablations & baselines914

In Tab. 5 we show the performance of background augmen-915
tation [30] and compare the ControlNet-finetuned (default)916
and directly finetuned versions of our approach. Using our917
approach with ControlNet and direct finetuning lead to the918
same overall mAP, with only small differences in individual919
classes. This suggest that the specific method of finetuning920

is not important, only that finetuning is performed at all. As 921
there is no official code release for background augmenta- 922
tion, we reimplemented the method ourselves. While we 923
are confident in our implementation, there is a possiblity 924
that we missed some important detail, leading to poor per- 925
formance. With augmented data from this method, mAP is 926
reduce by 1.2 points. Another possible explanation is a data 927
mismatch between the model and the nuImages dataset—the 928
method produces convincing results on some frames and 929
fails completely on others (see Fig. 12). We suspect that 930
with finetuning or quality filtering the approach could be 931
improved significantly. 932

B.5. Failure cases 933

We could identify some failure cases in our augmentation 934
approach, examples of which are shown in Fig. 13. 935

The first is a result of inpainting with instance masks. In 936
most cases, our mask decoder predicts object masks that 937
don’t include shadows. Depending on the lighting in the 938
original scene, this can give our objects a “floating” appear- 939
ance, which hurts visual realism (top row in Fig. 13). The 940
reason for this behaviour is that the instance masks in the 941
original data, which our mask decoder is trained with, do not 942
include shadows either. As a result, we were unable to find a 943
way to test if this actually hurts augmentation performance 944
or only visual realism. 945

The second failure case occurs when the depth estimate 946
for the scene is wrong. We use DepthAnything [42], which 947
produces relative depth estimates (or disparity to be more 948
precise, see Appendix A) that are normalized to the distance 949
value of the most distant parts of the scene. This is usually 950
the sky, but if there is no sky in the scene, e.g. when the ve- 951
hicle faces a wall, the depth is normalized to a closer value, 952
which in turn leads to our model producing objects that are 953
smaller than they should be (middle row in Fig. 13). We 954
experimented with a version of DepthAnything finetuned 955
for metric depth estimation, but still observed the same be- 956
haviour. 957

Finally, our location model relies on segmentation of 958
drivable space to place objects. Mistakes in the segmentation 959
map will sometimes lead object placement that is visually 960
unrealistic. In the example in Fig. 13 (bottom row), the 961
segmentation model identifies both the grass and the barrier 962
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Figure 13. Some failure cases that occur in our augmentation
approach. (top) Our mask decoder often fails to include shadows
in the mask. (middle) If the depth estimate is wrong, our model
produces objects with the wrong scale. (bottom) If the drivable
space segmentation is wrong, our model puts objects in unrealistic
locations.

above it as “terrain”, so that the silver car is rendered in a963
location where it doesn’t fit geometrically. This issue should964
disappear with better segmentation models, but we were965
unable to test how this influences augmentation performance.966

B.6. Qualitative examples967

We show more examples of augmented frames for all meth-968
ods compared in this work. Examples for ours are shown969
in Fig. 14, for object replacement in Fig. 15, for random970
placement in Fig. 16, for X-Paste [49] in Fig. 17, and for971
GeoDiffusion [6] in Fig. 18.972
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Figure 14. Additional frames augmented with our approach. We only show annotations for generated objects. Some frames are zoomed in
for better visibility.
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Figure 15. Additional frames augmented with object replacement. We only show annotations for generated objects. Zoom factors are chosen
to match Fig. 14.
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Figure 16. Additional frames augmented with random placement. We only show annotations for generated objects. Zoom factors are chosen
to match Fig. 14.
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Figure 17. Additional frames augmented with X-Paste [49]. We only show annotations for generated objects. Zoom factors are chosen to
match Fig. 14.
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Figure 18. Additional frames augmented with GeoDiffusion [6]. Zoom factors are chosen to match Fig. 14.
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