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Abstract

Recent advances focus on modeling a learning-based
method to realize the driver monitoring system, benefit-
ing from the powerful capability of data-driven feature ex-
traction. Although the acceptable performances of these
methods are achieved, the training procedure with mas-
sive data would significantly increase the labor costs.
Thus, it is intuitive to explore a training-free vision-based
driver state recognition in the era of large language model
(LLM)/multi-modal large language model (MLLM). In this
paper, we focus on a vision-based driver state monitoring
method, where a novel training-free driver state recogni-
tion method via human-centric context and self-uncertainty-
driven MLLM (HSUM). Extensive experiments are con-
ducted on two public benchmarks, where the competitive
performance of HSUM is demonstrated compared with the
state-of-the-art training-based methods.

1. Introduction

Driver state is one of the vital factors which can signif-
icantly impact the vehicle operation. The positive states
(such as concentration behavior and peace emotion) and
negative states (such as distraction behavior and anxiety
emotion) will strengthen the safety of driving and lead the
growth of road traffic risks, respectively. Although the au-
tonomous driving technology has gradually grown as the
real-life applications [18], the Driving Automation Lev-
els [1] ranging Level 0 to Level 3 still need the drivers to
fully or partially engage in vehicle control [23]. At Level 0,
the driver has complete control over the vehicle, and their
state directly affects their ability to make safe driving de-
cisions. Thus, driver monitoring system (DMS) plays one
of the key components of guaranteeing the driving safety,
which has attracted constant attention and interest from both
the academic and industrial communities [20].

In the past few decades, the vision-based monitoring
methods have emerged as the powerful technology [21]
which is cost-efficient to perceive the richest information.

The vision-based DMS can analyze the visual appearances
(e.g. posture, gesture, facial expression, and action) to cap-
ture the potential negative driver states. Then, the driver will
be alert to improve driving attention. Here, the learning-
based methods [2] are the dominant tools to bridge the im-
plicit gap between visual appearances and driver states, due
to the superiority of learning-based methods for feature ab-
straction and inference [30].

Recently, the success of deep learning has been wit-
nessed in many real-world applications [3, 9, 16, 17, 24,
25, 28]. Deep learning-based methods are capable of learn-
ing more robust and discriminative features from data au-
tomatically, which can avoid the cumbersome procedure of
handcrafted feature extraction. For the vision-driven DMS,
the deep learning-based methods [12, 22, 33] can be cate-
gorized into video-based and image-based methods. Since
the driver videos convey the more contextual information
than the images, we focus on exploring the video-based
method to analyze the driver states. Although the learning-
based driver state recognition methods have achieved the
considerable performances, there is a fact that these supe-
rior methods rely on training procedure with massive data,
resulting in the significant increase in labor costs [8]. Mean-
while, the trained models might not be adaptive to the un-
seen classes sufficiently in real-world scenarios. Most re-
cent years, the emergence of numerous large language mod-
els (LLMs) has attracted the significant attentions of cross-
domain researchers [26], since the remarkable capability of
LLMs has been achieved to analyze the human language
via textual prompt and generate the understandable texts for
natural language processing (NLP) tasks, such as text gen-
eration, sentiment analysis, and machine translation. The
paradigm of LLM-based method is to first design a task-
aware textual prompt, and then, assemble the source texts
and textual prompt as the input of LLM to generate the ex-
pected texts. Even more recently, LLMs have been extended
into multi-modal LLMs (MLLMs) [7, 31, 34, 35], in which
the remarkable capability of LLMs is extended to deal with
multi-modal sources, such as image, video, and audio infor-
mation. These works “hug” the general reasoning capability



Figure 1. Overview of Human-centric context and self-uncertainty-driven MLLM (HSUM).

of MLLMs to achieve the competitive performances com-
pared with supervised learning-based methods. Thus, there
is an open question remains: “Can we explore a method to
reason the driver states from videos without training pro-
cedure in the era of LLM/MLLM?”

To answer this question, we propose a novel training-
free driver state recognition method via human-centric con-
text and self-uncertainty-driven MLLM (HSUM). Specif-
ically, a human-centric context generator (HCG) is first
proposed based on a context-specific prompt. MLLM is
guided to capture the human-centric contextual cues as a
scene graph [6], which is powerful to represent the rich se-
mantic relationships between objects, as well as the con-
textual interaction of objects with their surroundings, such
as visual relationship detection. It would improve the
MLLM capability of understanding the relationships be-
tween objects and their context. Then, a self-uncertainty
response enumerator (SRE) is proposed to exploit the un-
certainty of MLLM. The potential reasoning responses are
enumerated repeatedly based on the assembly of the human-
centric context and uncertainty-specific prompt. Further-
more, to reveal the precise reasoning result from the enu-
merated responses, we introduce the Dempster-Shafer ev-
idence theory [27] (DST)-based combination rule to con-
duct an evidence-aware fusion (EAF). The enumerated re-
sponses are modeled as the evidences, while the fusion rela-
tionships among the evidences are analyzed via DST-based
combination rule. The precise answer could be gathered
theoretically, where the uncertainty of MLLM is mitigated
relatively.

2. Methodology

The overall framework of HSUM is shown in Fig. 1,
which consists of human-centric context generator (HCG),
self-uncertainty response enumerator (SRE), and evidence-
aware fusion (EAF). Let us denote a driver video with T
frames x ∈ RT×C×H×W , annotated with a driver state la-
bel y ∈ HK×1, where C, H , and W denote the number
of color channels, height, and width, respectively. K de-

Table 1. Comparison of HSUM with the state-of-the-art methods
on AIDE and 3MDAD. ACC (%)↑, F1 (%)↑, CG-ACC (%)↑, and
CG-F1 (%)↑ are utilized to evaluate the performance,where the
best results are highlighted in bold.

Method Backbone
AIDE TDDR 3MDAD TDDR AIDE TDER

ACC F1 CG-ACCCG-F1 ACC F1 CG-ACCCG-F1 ACC F1 CG-ACCCG-F1

Training-based

VGG16 [29] CNN 62.34 57.33 72.66 72.73 68.12 63.73 76.34 76.11 69.31 64.67 71.23 67.79

ResNet34 [15] CNN 59.77 54.64 73.01 72.75 65.62 61.19 71.75 71.67 69.68 64.83 72.62 68.75

I3D [5] CNN 66.17 61.35 74.38 74.36 69.37 64.63 76.93 76.37 70.94 65.99 71.43 68.05

SlowFast [11] CNN 61.58 59.41 75.53 75.73 66.25 62.95 76.98 76.13 72.38 70.77 75.17 74.24

TimeSFormer [4] ViT 65.18 63.24 73.73 73.91 68.75 66.39 77.31 77.53 74.87 72.56 76.52 74.92

DriveCLIP [14] ViT 66.01 64.23 75.73 75.47 68.98 66.73 78.67 78.53 75.56 73.63 78.78 76.15

SRLF-Net [13] ViT 66.17 64.45 75.89 75.69 69.11 66.56 78.53 78.13 75.20 73.31 78.65 75.91

Training-free

mPLUG-Owl3 [34] MLLM 53.03 47.24 61.96 61.38 52.17 49.48 60.34 60.01 56.90 54.34 61.69 59.83

Qwen2-VL [31] MLLM 55.48 49.93 64.50 64.26 56.62 52.04 62.91 62.53 58.45 56.82 64.14 62.40

LLaVA-Video [35] MLLM 54.92 49.37 63.94 63.71 56.06 51.48 62.45 62.07 58.12 56.26 63.58 61.83

VideoLLaMA2 [7] MLLM 55.87 48.42 64.89 62.65 57.01 50.53 63.37 61.14 59.08 57.30 64.54 62.78

HSUM (Ours) MLLM 61.74 57.60 71.59 71.75 63.87 59.11 70.11 69.95 69.12 64.83 71.23 68.80

notes the number of driver state classes, and H is Hamming
space. Specifically, the human-centric context G of x is first
generated via HCG MHCG as follows:

G = MHCG(x|ΦMLLM ,Sc), (1)

where ΦMLLM denotes the MLLM. G is the scene graph to
present the human-centric context, which consists of objects
and relationships. Sc denotes the string of context-specific
prompt to guide the MLLM. Then, the potential responses
are enumerated N times via SRE to explore the uncertainty
of MLLM as follows:

R = MSRE(x,G|ΦMLLM ,Su), (2)

where Su denotes the string of uncertainty-specific prompt
to guide the MLLM, and R = {r1, ..., rN} is a set including
N potential responses from MLLM. Finally, EAF is con-
ducted to model the enumerated responses as the evidences
based on DST, while the precise “answer” e∗ is revealed via
DST-based combination rule as follows:

e∗ = MEAF (R). (3)

3. Experiments
Dataset: The experiments are conducted on the two pub-
lic benchmarks for the driver state monitoring task, where
the driver distraction recognition (TDDR) and driver emotion



recognition (TDER) are introduced as the evaluation tasks.
AIDE [32] consists of 2898 video samples with 521.64K
frames. Each sample of subject is captured via an in-car
camera, annotated with bounding boxes (body and face)
and states (7 behavior classes and 5 emotion classes). The
dataset is split into the training, validation and testing sets
with 65%, 15% and 20%, respectively. 3MDAD [19] col-
lects 1120 video samples with 574.13K frames during the
daytime and the night, where the samples are annotated with
driver behaviors (16 classes) and head positions. Here, we
introduce the daytime samples which are split into the train-
ing and testing sets with 80% and 20%, respectively.

Evaluation Metric: The evaluation experiments are
conducted to the driver state recognition, including the
driver emotion recognition and driver behavior recogni-
tion tasks. Similar to [32], the classification accuracy
(ACC), weighted F1 score (F1), coarse-grained accuracy
(CG-ACC), and F1 score (CG-F1) are utilized to evaluate
the performance of recognition. CG-ACC and CG-F1 are
designed based on polarity emotions and anomaly behav-
iors, which consider the demand for practicality in DMS.

Comparisons with Other Methods: We compare the
state-of-the-art methods categorized as general methods
(VGG16 [29], ResNet34 [15], I3D [5], SlowFast [11], and
TimeSFormer [4]) and specific methods (DriveCLIP [14]
and SRLF-Net [13]), where the backbones involve CNN [5,
15, 29] and ViT [10]. Here, these methods are trained
based on the paradigm of supervised learning. Meanwhile,
these MLLMs used for HSUM had not prior access to la-
beled data of AIDE and 3MDAD, which is relatively fair
to the other supervised learning-based methods. As re-
ported in Tab. 1, we can observe that the performance of
HSUM with VideoLLaMA2 [7] is competitive to the other
methods. Furthermore, compared with the MLLM-based
training-free methods [7, 31, 34, 35], the superior perfor-
mances of HSUM are achieved on both TDDR and TDER.
Since HSUM is a training-free method, these results argue
its potential superiorities as follows. First, the training pro-
cedure is not essential, where the significant labor costs of
annotations could be avoided. HSUM could be more eas-
ily applied to different situations, such as different vehicles,
viewpoints and driver state recognition tasks, without train-
ing and dataset collection. Second, HSUM would not suffer
from the fixed classes in the training procedure, the unseen
classes could be “known” adaptively. Intuitively, the perfor-
mances of training-based methods would degenerate signif-
icantly for the unseen classes, since they are heavily reliant
on the patterns and features present in the training data, and
any deviation might lead to performance degradation.

4. Conclusion
In this paper, we propose a novel training-free driver state
recognition method via human-centric context and self-

uncertainty-driven MLLM (HSUM), in which the issues of
understanding the contextual cues and alleviating the inher-
ent uncertainty are addressed. Experimental results demon-
strate that HSUM achieves the competitive performances in
terms of driver distraction recognition and driver emotion
recognition.
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