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Abstract

Accurate 3D object detection in real-world environments001
requires a huge amount of annotated data with high qual-002
ity. Acquiring such data is tedious and expensive, and of-003
ten needs repeated effort when a new sensor is adopted or004
when the detector is deployed in a new environment. We005
investigate a new scenario to construct 3D object detec-006
tors: learning from the predictions of a nearby unit that is007
equipped with an accurate detector. For example, when a008
self-driving car enters a new area, it may learn from other009
traffic participants whose detectors have been optimized for010
that area. This setting is label-efficient, sensor-agnostic, and011
communication-efficient: nearby units only need to share012
the predictions with the ego agent (e.g., car). Naively using013
the received predictions as ground-truths to train the detec-014
tor for the ego car, however, leads to inferior performance.015
We systematically study the problem and identify viewpoint016
mismatches and mislocalization (due to synchronization and017
GPS errors) as the main causes, which unavoidably result018
in false positives, false negatives, and inaccurate pseudo la-019
bels. We propose a distance-based curriculum, first learning020
from closer units with similar viewpoints and subsequently021
improving the quality of other units’ predictions via self-022
training. We further demonstrate that an effective pseudo023
label refinement module can be trained with a handful of024
annotated data, largely reducing the data quantity necessary025
to train an object detector. We validate our approach on the026
recently released real-world collaborative driving dataset,027
using reference cars’ predictions as pseudo labels for the ego028
car. Extensive experiments including several scenarios (e.g.,029
different sensors, detectors, and domains) demonstrate the030
effectiveness of our approach toward label-efficient learning031
of 3D perception from other units’ predictions.032

1. Introduction033

Accurate detection of mobile objects (e.g., vehicles, humans)034
in 3D is essential for an intelligent agent (e.g., self-driving035
car, service robot) to operate safely and reliably [20, 37, 38,036
43]. Constructing such a 3D object detector is never easy037
— it requires a huge amount of high-quality labeled data.038
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Figure 1. Research problem of learning from others’ predictions.
We study the scenario where an agent (e.g., ego car) leverages the
predictions made by another agent (e.g., a high-end reference car)
as supervision to train its own 3D object detector. We observe
two challenges: (1) viewpoint mismatch between two cars and (2)
mislocalization due to synchronization/GPS errors.

Acquiring them is laborious and expensive, and is seldom 039
a once-and-for-all effort. Whenever an agent enters a new 040
environment and encounters new objects, its detector needs 041
adaptation to remain accurate. Whenever a new sensor is 042
adopted (e.g., for energy or space efficiency), the different 043
patterns in sensor data (e.g., LiDAR point cloud style and 044
density) necessitate the detector to be retrained. All these 045
updates to the detector imply yet another round of tedious 046
labeled data acquisition. 047

Could we bypass or, at least, reduce the repeated labeling 048
effort? In this paper, we investigate the scenario in which 049
there are other nearby agents equipped with accurate 3D 050
object detectors (but not necessarily with the same sensor 051
configuration). This scenario is realistic and promising. For 052
example, self-driving taxis (e.g., Waymo, Baidu) or local fa- 053
cilities (e.g., surveillance systems, roadside units) are likely 054
to be equipped with optimized detectors for their specific 055
geo-fenced areas. While it may be infeasible for these local 056
“experts” to directly share their raw sensor data or detectors 057
(e.g., due to data size and format; commercial and intellectual 058
properties; implementation incompatibility), the predictions 059
(e.g., detected 3D bounding boxes) are more lightweight and 060
standardized. Several recent works also show that sharing 061
predictions would benefit each participating agent’s percep- 062
tion accuracy [4, 18, 19, 26, 42, 50, 51, 53, 64], further 063
incentifying such a collaborative scenario. Last but not least, 064
sharing predictions implies that there is no need for all the 065
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agents to use the same sensors. An agent adopting a new sen-066
sor or entering an unfamiliar environment thus could borrow067
the predictions made by other agents, potentially equipped068
with higher-end sensors, as labels to train its detector. (Please069
see Sec. 3.1 for a feasibility and practicality discussion of070
our setting.)071

In this paper, we thus investigate a new scenario to con-072
struct a 3D object detector: learning from the predictions073
of a nearby agent equipped with an accurate detector. We074
use the real-world collaborative driving dataset [53] as the075
testbed. For each 3D road scene, this dataset records two Li-076
DAR point clouds from two nearby cars distancing between077
0 ∼ 100 meters and offers object labels separately for each078
point cloud. We use one of the cars as the reference agent,079
equipped with an accurate 3D detector, to provide predicted080
labels from which the other (ego) car can learn.081

At first glance, this research problem may appear trivially082
as a standard supervised learning problem — using another083
agent’s predictions as labels to train the detector for the084
ego car. However, our preliminary attempt showed that this085
straightforward approach results in poor performance. We086
identify two major challenges (Fig. 1). First, in real-world087
applications, inaccuracies such as GPS errors and synchro-088
nization delays between agents are common. For example,089
a minor delay of just 0.1 seconds can cause a discrepancy090
of several meters in localization for a vehicle traveling at 60091
mph. Second, the viewpoints of the two agents can vary sig-092
nificantly. An object visible to one agent might be obscured093
or out of range for the other due to occlusion or distance,094
leading to false positives and negatives in the predictions.095
Training with such mislocalized and viewpoint-mismatched096
labels inevitably results in suboptimal performance for the097
new 3D detector of the ego car.098

To address these challenges, we propose a learning099
pipeline termed as Refining & Discovering Boxes for 3D100
Perception from Others’ Predictions (R&B-POP). For mis-101
localization, we train a box refinement module to rank the102
noisy candidates and correct their locations. Notably, this103
module requires very few human labels (1% or less), or even104
no human labels if simulation data are available. We also105
develop a coarse-to-fine approach to search for high-quality106
candidates around the predicted object locations efficiently,107
tackling large localization errors. For viewpoint mismatch108
that results in false negatives in the ego car’s perspective, we109
present an effective self-training strategy empowered by a110
novel distance-based curriculum, enabling the detector to111
first learn from a subset of high-quality labels and in turn112
fill in the missing labels for the model to continually learn113
from. With these approaches, we significantly improve the114
quality of pseudo labels and, consequently, produce a much115
more accurate 3D detector for the ego car, with very limited116
human labeling — the Average Precision (AP) at IoU 0.5117
increases from 22% to 56.5% using only 40 labeled frames!118

In summary, we introduce a novel research problem that 119
learns 3D perception for a new agent with reference agent’s 120
predictions. We identify the main challenges about the label 121
quality and propose corresponding solutions. With extensive 122
experiments, we demonstrate the applicability of the new 123
learning scenario as well as the improvements achieved by 124
our designs. 125

2. Related Work 126

3D object detection serves an important role in real-world 127
applications such as autonomous driving. The detector takes 128
3D signals (e.g., LiDAR points) as input, and predicts the 129
existence and the location of objects of interest. Notable 130
development has been made thanks to the recently curated 131
large datasets [3, 12, 39, 53, 64]. The existing approaches 132
can be categorized as voxel-based (or pillar-based) meth- 133
ods [20, 54, 68], which subdivide irregular 3D point space 134
into regular space, and point-based methods [59, 67], which 135
directly extract discriminative point-wise features from the 136
given point clouds. Regardless of approaches, these methods 137
require manually annotated data of high-quality to achieve 138
satisfactory performance. In this study, we aim to bypass 139
such a labeling cost and demonstrate our new label-efficient 140
learning method with representative 3D detectors [20, 54]. 141
Label-efficient learning. Self-supervised learning is a 142
promising way to bypass extensive label annotation [5, 6, 15, 143
17]. Pre-trained with abundant, easily collectible unlabeled 144
data, the detector backbone is shown to largely reduce the 145
labeled data for fine-tuning [31, 49, 60]. Label-free 3D ob- 146
ject detection from point clouds has gained attention due to 147
its effective data utilization [1, 8, 27, 29, 36, 55, 61, 62, 66] 148
and generalization beyond specific class information dur- 149
ing training [30]. Researchers have also explored semi- 150
supervised methods [23, 24, 41, 46, 47, 58, 65] or offboard 151
detectors [28, 34] to reduce the manual labeling efforts. Or- 152
thogonally, we study a new scenario to learn the detector in a 153
label-efficient way by considering beyond a single source of 154
information. Specifically, the predictions from well-trained 155
detectors of reference units near the ego car are leveraged as 156
(pseudo) labels. 157
Domain adaptation. Our setting is related to domain adap- 158
tation (DA), as we aim to improve an object detector in a 159
new environment (e.g., a new location or data pattern). Ex- 160
isting studies [7, 44, 55, 56] mostly focus on the generic, 161
single-agent unsupervised DA setting, while a few leverage 162
application-specific cues, e.g., repetitions [63], to facilitate 163
adaptation. Our setting belongs to the second branch, in 164
which we explore a multi-agent scenario. Our goal is not to 165
compete with the generic setting. Instead, generic DA tech- 166
niques, e.g., advanced self-training [16, 32, 40, 45], can be 167
compatible with our setting to further boost the performance. 168
Curriculum learning. Many studies have shown that prop- 169
erly ordering the data to progressively add harder samples 170
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during training leads to superior performance. The so-called171
“curriculum learning” [2] has also been explored in object de-172
tection [22, 35]. For LiDAR-based 3D detection, researchers173
have applied the concept for better data augmentation during174
training [55, 69]. We investigate the task-specific character-175
istics from the data and discover a meaningful correlation176
between the label quality and the ego-car-reference-car dis-177
tance. We then apply this observation to design an effective178
training curriculum.179
Collaborative perception. To mitigate limited detection180
range and occlusion, self-driving researchers have recently181
focused on integrating nearby detectors’ information [4, 18,182
19, 26, 42, 50, 51, 53, 64]. During inference, more than183
one detector communicates with each other and shares their184
information (e.g., input signal, feature, or predicted boxes)185
to detect objects better. While also leveraging other cars’186
information, our research focus is different — we investigate187
a new label-efficient learning scenario, using other (expert)188
cars’ predictions as supervision to build the ego car’s detector189
offline.190

3. Learning 3D Perception from Others’ Predic-191

tions192

We study a novel research problem in autonomous driving:193
training a 3D detector using bounding boxes supplied by a194
nearby agent. This scenario, while unexplored, can reduce195
or even eliminate labeling efforts. We identify the key chal-196
lenges and propose the learning pipeline to address them.197

3.1. Problem definition and feasibility198

Problem setup. Without loss of generality, we assume that199
around the ego car (i.e., E), there is a reference car (i.e., R)200
equipped with an accurate 3D object detector fR. E and201
R are both equipped with 3D sensors (e.g., LiDAR) and202
collect their point clouds (i.e., XE and XR) in the same road203
scene. Notice that XE and XR can have different patterns204
due to variations in hardware. R, the car that E learns from,205
share 3D bounding boxes of foreground objects in the global206
coordinate from its detector, i.e., YR = fR(XR). Our goal207
is to train a 3D detector fE that works with XE , by using208
YR. Please see Sec. S1 for more detailed problem setup.209
Feasibility and practicality. Before proceeding, we con-210
sider two critical questions, “Why can nearby agents obtain211
accurate detectors?” and “Why can they not directly share212
their detectors?” Besides the examples mentioned in Sec. 1213
(e.g., self-driving taxis), we emphasize that these nearby214
agents need not be “omniscient.” Instead, they only need to215
be experts in geo-fenced areas where the ego agent passes by216
and can even be static, making training their detectors easier217
and much more label-efficient, e.g., using the repetition or218
background cues [9, 61, 62].219

Regarding “why these agents cannot just share their de-220
tectors,” we note that while open-sourcing is common in221

Table 1. Label quality in recall and precision at IoU 0.5 with E’s
GT. Our methods improve the label quality significantly.

R’s GT R’s pred

pseudo label rec. / prec. rec. / prec.

➀ initial boxes 54.8 / 43.2 56.1 / 48.0
➁ + basic filtering 54.1 / 65.6 55.3 / 71.4
➂ + our refinement 66.2 / 85.4 65.2 / 79.0
➃ + our self-train 72.5 / 90.0 74.4 / 87.7

➄ sharing detector - 78.8 / 86.8

the research community, there are many considerations and 222
constraints when it comes to practical scenarios. First, the 223
ego and the reference agents do not need to have the same 224
sensors. Indeed, they may not even perceive the environ- 225
ment from the same views, e.g., the reference agent can 226
be a roadside unit placed six meters high and facing down 227
[9, 57]. This discrepancy makes the direct deployment of 228
the reference agent’s model to the ego agent suboptimal. 229
Second, the two agents may be equipped with different com- 230
putational platforms, e.g., the reference one is equipped with 231
GPUs while the ego one with FPGA boards and hardware 232
acceleration code [13, 14], making direct deployment more 233
challenging. Last but not least, reference agents’ detectors 234
may be specifically designed and trained, e.g., using private 235
data. Sharing them thus raises intelligent property or privacy 236
concerns. Putting things together, we argue that our setting 237
is realistic and has significant practical implications. 238

3.2. Challenge 239

First attempt. We use the recently released real-world col- 240
laborative driving dataset [53] as the testbed. For each 3D 241
road scene (with a time tag), the dataset provides LiDAR 242
point clouds and ground-truth 3D bounding boxes from each 243
agent’s perspective. (We keep the data and experimental 244
details in Sec. 4.) We begin by employing YR (i.e., R’s 245
predictions) directly as labels for E to train fE , after trans- 246
forming YR into E’s coordinate system. To establish an 247
upper bound, we also train a detector using E’s ground-truth 248
labels. The result shows that the detector performance by 249
naively using YR is way much worse than the upper bound 250
(AP at IoU 0.5: ➀ 22.0 vs. ♣ 58.4 in Table 2). 251

At first glance, such a gap, with no doubt, must come 252
from reference car R’s prediction errors. To eliminate the 253
effect, we use R’s ground-truths as labels (i.e., R’s GT) to 254
train another detector for the ego car E. To our surprise, 255
using R’s GT can hardly improve the detector’s performance, 256
suggesting the existence of other, more fundamental factors 257
in the real-world environment. 258
Key challenges. To search for the root cause of the poor 259
detector performance, we visualize the point clouds and 260
ground-truth bounding boxes of the two cars in Fig. 2. We 261
identify two major sources of errors: viewpoint mismatch 262
and mislocalization. Viewpoint mismatch occurs when ob- 263
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Figure 2. Point and box discrepancies between ego and reference
cars on the real dataset [53].
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Figure 3. Mislocalization between E’s and R’s GT.

jects are obscured from one sensor’s view due to occlusion or264
field of view limitations, while mislocalization results from265
GPS inaccuracies and synchronization delays. For instance,266
a communication delay of 0.1 seconds in a car traveling at267
60 mph can result in a localization discrepancy of 2.7 me-268
ters. These errors can significantly degrade the quality of269
the learned detector fE for the ego car E — the training270
labels are simply noisy. To further dive into these challenges,271
we measure the precision and recall of YR vs. the ego car272
E’s ground-truth labels to assess label quality, as shown in273
Table 1. Even after applying basic filtering commonly used274
in autonomous driving (e.g., removing distant boxes or those275
with few points that are beyond E’s field of view), the label276
quality remains unsatisfactory (Table 1 ➁). In the following277
sections, we introduce our pipeline R&B-POP to tackle these278
challenges.279

3.3. Label-efficient box refinement280

Preliminaries. We conduct a detailed analysis of the lo-281
calization discrepancies in each coordinate (x forward, y282
leftward, z upward) between R’s and E’s overlapping ground-283
truth boxes, as illustrated in Fig. 3. Notice that a mere 0.5-284
meter discrepancy in the x and y coordinates can drastically285
reduce the IoU from 100% to 30%. Training with such286
inaccurate pseudo labels inevitably leads to suboptimal per-287
formance in E’s 3D detector. A refinement module for the288
labels is thus necessary!289

Baseline approach with heuristics. To begin with, we290
adopt the algorithm proposed in Luo et al. [27], which re-291
fines boxes using heuristics. Specifically, multiple boxes292
are sampled around the initial noisy boxes, and the optimal293
boxes are selected based on the best alignment of edges and294
sizes between the boxes and point clouds. However, this295

method requires certain conditions to achieve satisfactory 296
performance, such as multiple trajectories at the same lo- 297
cation, potentially limiting the applicability. As in Table 2, 298
adapting it to our problem brings marginal gains, especially 299
for the high IoU of 0.7 (AP ➀ 4.2 vs. ➂ 10.3). 300

Label-efficient box ranker. To address this limitation, we 301
propose to train a box ranker that evaluates the localization 302
quality of given bounding boxes. Instead of predicting a 3D 303
box from scratch (i.e., a typical detection problem), learning 304
to select and adjust among noisy candidates is a much easier 305
task. We thus expect learning such a ranker needs much 306
fewer labeled data! To investigate this idea, we sample a 307
handful of E’s point clouds with ground-truths to train the 308
ranker. We randomly sample multiple boxes around each 309
annotated object box and crop point clouds outlined by those 310
sampled boxes (with expansion). The training objective is 311
dual: to regress the IoU between a sampled box and the anno- 312
tated box, serving as the indicator of localization quality, and 313
to estimate the offset to the annotated box, further refining 314
its location. During inference, we use YR as initial boxes 315
and sample N boxes around each. The top-ranked boxes 316
are selected among all candidates to construct Y ′

R as pseudo 317
labels for training the 3D detector fE for E (see Fig. 4). 318
We adopt a neural network similar to PointNet [33] for the 319
ranker for its simplicity. Please see the supplementary for 320
details. 321

Coarse-to-fine (C2F) refinement. As previously discussed, 322
minor time delays can result in large discrepancies of sev- 323
eral meters. To address this and expand the search region, 324
thereby increasing the number of high-quality bounding box 325
candidates for our ranker, we employ a two-stage approach 326
during inference, as illustrated in Fig. 5. In the first stage, we 327
generate N

2 candidate boxes for each initial box by sampling 328
translations from a wider range using a uniform distribution, 329
while keeping the scale and pose of the boxes fixed. In the 330
second stage, we select the top-K boxes from the first stage 331
to serve as new initials and sample another N

2 total new 332
boxes around them, this time considering all degrees of free- 333
dom (i.e., translation, scale, and pose) but from a narrower 334
range using normal distributions. This coarse-to-fine (C2F) 335
strategy effectively bridges the large localization gap and 336
enhances the refinement quality of Y ′

R. With the box ranker 337
and C2F, we raise the label quality from a recall of 55.3 to 338
65.2 and a precision of 71.4 to 79.0 upon basic filtering, as 339
shown in Table 1 ➁ vs.➂, using only 40 labeled frames. Con- 340
sequently, the performance of fE also shows a significant 341
gain from 22.0% to 38.0% in AP at IoU 0.5, as reported in 342
Table 2 ➀ vs.➃. 343

Ranker-based filtering. The trained ranker not only refines 344
the given boxes but also estimates their IoU with ground- 345
truth boxes. Applying a threshold on predicted IoU effec- 346
tively removes false positives, thus improving detection per- 347
formance as shown in Table 4b. 348

4



ICCV DriveX
Workshop

#1

ICCV DriveX
Workshop

#1ICCV DriveX Workshop 2025 Submission #1. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

GT box

sampled box

Ranker

initial label

sample
0.53

0.94👍
N boxes

training inference

sampled box

0.31 Ranker⋮ N ⋮

Figure 4. Box ranker for refining localization error. With a few annotated frames, we train a ranker that can estimate the quality of a given
box. During inference for pseudo labels, we sample multiple candidates near the initial noisy box and choose the one with the best IoU.

Naive sampling Coarse-to-fine sampling

: sampled candidates: initial box
: intermediate box: selected box

Figure 5. Sampling methods for box refinement. Proposed C2F
is more effective in large mislocalization.

3.4. Distance-based curriculum349

Viewpoint mismatch introduces false positives (i.e., objects350
should not be visible from E’s perspective) and negatives351
(i.e., objects should be visible to E but are not provided by R)352
in YR. While false positives can be removed by filtering (e.g.,353
basic and ranker-based filtering), false negatives are much354
harder to be recovered. It becomes necessary to discover355
new boxes from E’s perspective.356

Box discovery from the ego car E’s view. Inspired by the357
previous work [62], self-training [21, 48] is a popular tech-358
nique to propagate labels to unlabeled data. This method359
typically employs high-quality labels to train the base de-360
tector and subsequently uses its predictions to generate new361
pseudo labels for further fine-tuning cycles. However, as362
discussed in previous sections, our initial (pseudo) labels363
are inherently noisy, which can hinder the efficacy of self-364
training. This leads to a pivotal question: How to ensure the365
quality of pseudo labels for effective self-training?366

Key observation about distance. We find out that there367
exists a unique property in our learning scenario — the368
extent of viewpoint mismatch is correlated with the distance369
between E and R. Specifically, discrepancies are typically370
reduced when the two are closer and increased when they371
are distant (Fig. 7). This intuition leads us to use the distance372
of two cars as an indicator of the quality of pseudo labels373
provided by R. Building on this observation, we develop two374
distance-based methods in the following.375

Distance-based curriculum for self-training. We create a376
high-quality subset of pseudo labels by applying a simple377
distance threshold TE-R to all frames, meaning that we trust378
pseudo labels from R when two cars are close enough. In the379
first round of self-training, the 3D detector fE is exclusively380
trained on this high-quality subset. In later rounds, we fine-381
tune on all frames with pseudo labels predicted by FE . This382

approach propagates labels learned from confident frames to 383
unconfident ones. 384
Distance-based filtering. Self-training needs a filtering 385
mechanism to select high-quality predictions by the current 386
detector, which are then treated as true labels to supervise 387
the next round of detector training. Normally, this is done 388
by setting a fixed threshold Tc in prediction confidence1. 389
Here, we employ a distance-based threshold, inspired by our 390
self-training procedure. Specifically, since we trust frames 391
with smaller ego-car-to-reference-car distances and train 392
the detector with them in the first round, the detector will 393
inherently be overly confident in these frames. As such, a 394
higher threshold shall be assigned when selecting pseudo 395
labels from them. We implement this idea by increasing the 396
confidence threshold with a negative linear function of the 397
distance (i.e., Tc + λ/distance(E,R)). 398

Put together, these two distance-based approaches not 399
only uncover boxes that should be visible to E but also 400
preserve the quality of pseudo labels for self-training. As 401
shown in Table 1 ➃, self-training with distance-based cur- 402
riculum further improves label quality from 79.0% to 87.7% 403
in precision and 65.2% to 74.4% in recall, resulting in an 404
enhancement of fE’s performance from AP of 38.0% to 405
56.5%, as detailed in Table 2 ➃ vs.➉. As a reference, we 406
show the predicted label quality on XE using fR in Table 1 407
➄, simulating the ideal case where the object detector can 408
be shared. Our R&B-POP achieves similar label quality, 409
demonstrating the applicability of our setting for learning 410
high-quality detectors from others’ predictions. 411

3.5. Overall pipeline 412

Putting everything together, our overall offline pipeline in- 413
volves the following steps (Fig. 6). 414
Step 0. Ranker training with few annotated labels 415
(Sec. 3.3). 416
Step 1. First-round self-training: Preparing pseudo la- 417
bels after receiving R’s predictions (applying basic filter- 418
ing), further improving labels with ranker + C2F and ranker- 419
thresholding (Sec. 3.3), and then training the detector fE 420
with closer frames (Sec. 3.4). 421
Step 2. Second-round self-training: Preparing pseudo 422

1We note that the detector’s confidence is not the same as the IoU
predicted by the ranker in Sec. 3.3.
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Figure 6. Overall pipeline of R&B-POP. The ego car first receives reference’s predictions which contain inherent noises (Sec. 3). It
refines their localization with proposed box ranker (Sec. 3.3). Then, it creates high-quality pseudo labels by distance-based curriculum for
self-training (Sec. 3.4).
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Figure 7. Quality of pseudo labels from R’s predictions drops
when two cars are farther apart.
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Figure 8. Dataset split. We re-split V2V4Real [53] for our setting.

labels after receiving fE’s prediction (applying distance-423
filtering in Sec. 3.4), further improving labels with ranker424
+ C2F and ranker-thresholding (Sec. 3.3), and then training425
the detector fE with all frames.426

4. Experiments427

4.1. Experimental setups428

Datasets. To validate the effectiveness of our method,429
we conduct experiments primarily on the V2V4Real430
dataset [53], which consists of 40 clips with a total of 18k431
frames by driving two cars, Tesla and Honda, together within432
100m. LiDAR points are acquired with a Velodyne VLP-32433
LiDAR sensor. The dataset provides annotations for differ-434
ent types of vehicles, such as cars and trucks. (Please see435
additional results on the OPV2V dataset [52] in the supple-436
mentary.)437

To align with our research purpose, we re-split the orig-438
inal data into three portions: ”R pretraining”, ”R predic-439
tion/E training”, and ”E validation/test” (Fig. 8). Specifi-440

cally, we split them into two subsets containing 20 clips and 441
use the first subset to pre-train R’s detector fR. Then we 442
inference on the second subset to provide pseudo labels YR 443
for training E’s detector fE together with E’s point clouds. 444
We validate and test the E’s performance on the first subset 445
by splitting it into 20% and 80%. Our re-split gives 4,488 446
frames for R pretraining, 4,463×2 frames for E training, and 447
870 and 3,618 frames for E validation/test respectively. The 448
performance in the paper is reported on E’s test set. 449

Evaluation. We follow Xu et al. [53] to merge different 450
types of vehicles (e.g., cars, trucks) into a single category 451
2. We report the average precision (AP) of detectors in the 452
bird’s-eye view with IoU thresholds of 0.5 and 0.7. Specif- 453
ically, we set the region of interest to [-80, 80]m for the 454
heading direction and [-40, 40]m for the direction perpen- 455
dicular to the moving direction. We also report the AP on 456
different depth ranges [0-30, 30-50, 50-80, 0-80]m follow- 457
ing Luo et al. [27]. 458

Implementation. We conduct experiments with PointPil- 459
lars [20] as a default detector. We train it with 60 epochs and 460
a batch size of 64 on 8 NVIDIA Tesla P100 GPUs. We use 461
Adam optimizer and an initial learning rate of 2e-3 dropped 462
to 2e-5 by cosine annealing decaying strategy [25]. For 463
training the box ranker, a PointNet [33] specified in the sup- 464
plementary, we use 40 annotated frames (< 1% of training 465
data) to generate 11k samples. In the offline ranker inference, 466
we sample N = 512 boxes around each prediction provided 467
by the reference car. We first sample 256 boxes in the coarse 468
stage, select top-3 boxes, and then sample the remaining 256 469
boxes near the selected boxes in the fine stage. For curricu- 470
lum learning, we set TE-R to 40m. Also, we set the ranker 471

2We note that V2V4Real [53] does not label objects beyond vehicles and
the data distributions across different types of vehicles are largely imbal-
anced. Thus, it is infeasible to study multi-class vehicle detection. That said,
extending our approach to a multi-class setup would be straightforward if a
suitable dataset is available. The key is to make the ranker category aware.
Please refer to our experiments on extending the ranker to a multi-class
setting in the supplementary.
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Table 2. Main results: validation of the proposed learning scenario and methods. The results indicate a new research problem of
learning with others’ predictions has inherent challenges. With proposed R&B-POP, we significantly close the gap to the upper bound that
directly uses ego car’s ground-truth labels (➉ 56.5 vs.♣ 58.4). The performance is reported on PointPillars [20] with 32-beam LiDAR. :
uses GT labels. : our proposed methods.

AP @ IoU 0.5 AP @ IoU 0.7

pseudo label box refinement self-training 0-30m 30-50m 50-80m 0-80m 0-30m 30-50m 50-80m 0-80m

➀ R’s pred - - 34.7 13.5 8.6 22.0 7.6 2.2 1.5 4.2
➁ R’s GT - - 29.7 14.1 7.3 19.6 5.9 2.2 1.8 3.7

➂ R’s pred heuristic [27] - 53.2 22.0 16.9 37.8 16.5 4.5 3.9 10.3
➃ R’s pred ranker - 50.3 24.7 18.2 38.0 33.6 12.9 8.9 22.9

➄ R’s pred - naive [62] 45.9 18.7 16.5 32.4 13.8 4.6 5.9 9.2
➅ R’s pred heuristic [27] naive [62] 50.4 19.6 15.4 35.4 13.8 4.2 3.6 8.9
➆ R’s pred ranker naive [62] 60.6 29.7 19.2 45.0 40.8 16.7 9.5 28.0

➇ R’s pred - distance-based curriculum 57.3 29.6 21.0 42.5 21.0 5.9 3.9 12.7
➈ R’s pred heuristic [27] distance-based curriculum 60.5 25.5 17.0 43.2 18.3 4.4 3.0 11.0
➉ R’s pred ranker distance-based curriculum 73.3 43.3 23.3 56.5 47.1 21.1 10.0 32.6

♣ E’s GT - - 75.2 45.9 28.8 58.4 51.7 25.4 14.8 36.3

R’s pred after refinement after self-training E’s GT

: reference car

Figure 9. Qualitative results. The quality of pseudo labels is gradually improved with the proposed R&B-POP. Our ranker successfully
fixes mislocalization errors, and distance-based curriculum further discovers new objects from E’s view.

threshold to 0.5, and λ for the distance-based threshold to 1472
with a fixed confidence threshold Tc of 0.2. Please refer to473
the supplementary material for more details.474

4.2. Experimantal results475

We first demonstrate our scenario, learning with others’ pre-476
dictions, with a basic setup: R and E both have 32-beam477
sensors with PointPillars [20], but only R’s detector was478
pre-trained. Table 2 compares different methods for pseudo479
labels, including baselines such as standard self-training [62]480
and heuristic-based label refinement [27]. For fair compar-481
isons, we note that we only utilize annotated boxes from482
40 frames to train our ranker, not to train the detector.483
For the heuristic-based refinement [27], as our dataset has484
no repeated traversal to estimate movable objects, we use485
RANSAC [11] instead.486

Firstly, our ranker brings a notable gain over heuristics-487
based refinement (➂ 10.3 vs. ➃ 22.9, ➅ 8.9 vs. ➆ 28.0, and488

➈ 11.0 vs. ➉ 32.6 on AP at IoU 0.7), demonstrating its effec- 489
tiveness to address mislocalization. Secondly, our distance- 490
based curriculum consistently improves the performance 491
over the standard self-training (➄-➆ 32.4/35.4/45.0 vs.➇-➉ 492
42.5/43.2/56.5), demonstrating the necessity of using higher- 493
quality samples for self-training. Finally, by comparing with 494
detectors trained with E’s ground-truth, our method achieves 495
on par with the upper bound (➉ 56.5/32.6 vs.♣ 58.4/36.3). 496

Fig. 9 visualizes the improvement of pseudo labels with 497
our method. The ranker successfully refines mislocalized 498
pseudo labels provided by R. Moreover, our distance-based 499
curriculum discovers new bounding boxes that E couldn’t 500
receive from R’s perception, without introducing many false 501
positives. 502

4.2.1. Ablation study 503

Analysis on ranker training. We first check the perfor- 504
mance of the ranker trained with different number of anno- 505
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Table 3. Ablations on box ranker. (a) The training of the ranker requires very few human labels. Using simulation data further eliminates
the need yet performs on par. (b) The proposed inference strategies effectively generate high-quality pseudo labels, resulting in better
performance.

AP @ IoU

training data # annot. frames 0.5 0.7

E’s GT
20 54.8 30.0
40 56.5 32.6
80 55.5 32.8

Simulation [52] 21k 52.2 28.4

(a) Analysis on training labels.

sampling AP @ IoU

offset naive C2F 0.5 0.7

➀ ✓ 50.2 28.5
➁ ✓ ✓ 56.5 30.7
➂ ✓ ✓ 56.5 32.6

➃ ✓ 54.4 31.0

(b) Analysis on inference strategies.

Table 4. Ablations on curriculum self-training. The results show that each individual component in our proposed method contributes to
the optimal performance. (a) Our curriculum selectively leverages useful frames during each stage of training. (b) Our label thresholding
effectively discards noisy labels for training, resulting in improved performance.

pseudo label AP @ IoU

stage 1 stage 2 0.5 0.7

➀ 0-90m 0-90m 45.0 28.0
➁ 0-40m 0-40m 50.3 24.7
➂ 0-40m 40-90m 51.1 26.0
➃ 40-90m 40-90m 33.5 20.0

➄ 0-40m 0-90m 56.5 32.6

(a) Analysis on different curriculums.

AP @ IoU

ranker
threshold

distance-based
threshold 0.5 0.7

50.2 26.2
✓ 54.9 30.3

✓ 52.2 28.3
✓ ✓ 56.5 32.6

(b) Analysis on box filtering.

tated frames (i.e., 20, 40, and 80) in Table 3a. Notably, we506
observe a performance boost when the ranker is trained with507
40 frames compared to 20 frames, and the performance gain508
diminishes with more than 40 frames. This demonstrates that509
the ranker already perform well with very few labeled data510
(i.e., 1% of total). Moreover, we train our ranker with 21k511
samples generated by CARLA simulator [52] and achieves512
on par performance, exploring to remove the need of human513
labels. As shown, our ranker trained with off-the-shelf simu-514
lated data can achieve 28.4% AP at IoU 0.7, higher than the515
11.0% AP at IoU 0.7 achieved by [27] (Table 2 ➈).516

Analysis on ranker inference. We investigate the impact517
of inference strategies for the refinement on the final de-518
tection performance in Table 3b. The results indicate that519
sampling boxes (➀ 28.5 vs.➁ 30.7) and coarse-to-fine refine-520
ment (➁ 30.7 vs.➂ 32.6) contribute to superior performance,521
especially for the fine-grained quality of IoU 0.7. We also522
observe the benefit of using predicted offsets to further refine523
box locations (➃ 31.0 vs.➂ 32.6). This demonstrates the524
effectiveness of our sophisticated box refinement strategies.525

Analysis on curriculum for self-training. In our method,526
we split the training data into two subsets with the threshold527
TE-R of 40m. We train the detector on different combina-528
tions of subsets and check its performance (Table 4a). We529
observe that using initial low-quality frames to train the530
model gives significantly lower performance (➃ 33.5 vs.➄531
56.5). Also, we see that the performance escalates as we532
utilize more high-quality frames during the next self-training533
stage (➁ 50.3, ➂ 51.1 vs.➄ 56.5), verifying the effectiveness534

of our curriculum choice. 535
Analysis on box filtering for self-training. To prevent the 536
model from introducing false positive boxes during the self- 537
training, we design a distance-based confidence threshold 538
and ranker-based filtering. As shown in Table 4b, the detec- 539
tor improves with our strategies. This indicates a good bal- 540
ance between recall and precision provided by our method, 541
resulting in better detection performance. 542

4.2.2. Additional empirical studies 543

We leave additional results in the supplementary, including 544
applications to different scenarios, the ideal scenario where 545
the object detector can be shared, analysis on ranker and 546
self-training, and extension to another dataset. 547

5. Conclusion and Discussion 548

In this work, we have introduced learning with others’ pre- 549
dictions, a new way to train a 3D detector with the predic- 550
tions of reference units. We have systematically identified 551
the inevitable task-specific problems: false positive, false 552
negative, and noisy boxes due to either viewpoint mismatch 553
or synchronization/GPS errors. Next, we have proposed to 554
improve the quality of pseudo labels by two solutions: A box 555
ranker and distance-based curriculum self-training. We have 556
demonstrated a wide applicability of our learning scenario 557
with different detectors, sensors, and domains. 558

8



ICCV DriveX
Workshop

#1

ICCV DriveX
Workshop

#1ICCV DriveX Workshop 2025 Submission #1. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References559

[1] Stefan Baur, Frank Moosmann, and Andreas Geiger. Liso:560
Lidar-only self-supervised 3d object detection. In ECCV,561
2024.562
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Supplementary Material for
Learning 3D Perception from Others’ Predictions

In this supplementary material, we provide implementation details and experimental results in addition to the main paper:803
• Sec. S1: provides additional discussion of the scenario.804
• Sec. S2: provides further implementation details.805
• Sec. S3: provides additional empirical studies.806

S1. Additional Discussion807

More details on problem setup. In our study, the overall goal is to develop a 3D perception model that can be deployed in an808
online setting. A conventional development process can typically be decomposed into four stages:809
• Stage 1: data collection (online)810
• Stage 2: data annotation, often by humans (offline)811
• Stage 3: model training and validation (offline)812
• Stage 4: model deployment and evaluation (online)813

We exactly follows the four stages, except that in Stage 1, we assume that some nearby agents (e.g., robotaxi, roadside unit)814
share their predictions as pseudo labels (e.g., bounding boxes). We study how to leverage these pseudo labels to reduce human815
annotation in Stage 2 while maintaining the trained model quality in Stage 3.816

Here, the stage where the ego car collects the nearby agents’ predictions is the first stage, which is online. We note that817
there is no training or inference regarding the ego car’s detector during this stage. After we collect the pseudo labels from the818
nearby agents, we refine the noisy pseudo labels with our proposed method and train the ego car’s detector, which is offline819
(Stages 2 and 3). For our final model evaluation (Stage 4), which is online, the detector’s computational cost is exactly the820
same as the standard detector.821
Discussion on offboard methods. On the surface, both the offboard methods [28, 34] and our learning scenario assume822
the existence of a pre-trained model. However, the accessibility to the model is different. More specifically, in the offboard823
methods, the pre-trained offboard model is directly accessible. One can use it to label the unlabeled data collected by the ego824
car. The resulting pseudo-labeled data can then be used to train the final onboard model. However, in our scenario, we do not825
have direct access to the pre-trained model, as it is deployed on the nearby agent, not the ego car. As such, we cannot use it to826
label the unlabeled data collected by the ego car. What we can access are the nearby agent’s predictions on the data it collects,827
and we attempt to use them as pseudo labels of to train the ego car’s onboard model.828
Limitations and future work. The ego car’s detector can benefit from other reference units, such as roadside units in829
smart cities. In our future work, we plan to investigate more diverse scenarios. Moreover, the ego car and the reference car830
using different modalities would be a direction to explore further. We believe that our findings and approach have set the831
foundation for it. At a high level, our approach is sensor and modality-agnostic. Regardless of the type of sensors and detectors832
(camera-based or LiDAR-based) used, if we aim at 3D perception, they will produce 3D bounding boxes as pseudo labels. Our833
method does not necessitate a specific model for providing the pseudo labels and can be easily adapted to various sensor types.834
We leave this extension to future work.835

S2. Additional Implementation Details836

The entire training pipeline for the experiments takes 2.5 hours with eight NVIDIA P100 GPUs. During training, we apply837
conventional data augmentation techniques such as rotation, scaling, and flipping following Xu et al. [53]. For training838
SECOND [54] in our ablation study, we set the number of epochs to 40, with the remaining training settings the same as839
PointPillars [20]. For the domain adaptation experiments, we decrease the initial learning rate to 2e-4 and decay it to 2e-6, and840
fine-tune the model using the pre-trained parameters.841
Ranker architecture. In the main paper, we train a ranker to select the best candidate from the sampled boxes. Specifically,842
we build our ranker upon PointNet [33], taking a normalized box and its corresponding points as inputs (see Fig. S1). We use843
two linear layers with ReLU non-linearity for both score head and offset head. Our box ranker’s goal is similar to IoU scoring844
methods adopted in the existing detectors [10, 38]. However, we are motivated to build a ranker assuming we already have845
pseudo labels for objects but with a certain amount of localization errors. We demonstrate that this objective can be easily846
achieved with only a few frames (or even without any frame if we are able to use simulation data; Table 3 (a)) and without847
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Figure S1. Ranker architecture. We give the initial noisy bounding box together with its nearby point clouds to the ranker as inputs and
predict the IoU and offset to the ground-truth box.

sophisticated architectural design. Therefore, we keep it to a very simple regressor that can already be satisfactorily used to 848
demonstrate the effectiveness in refining the noisy pseudo labels. 849
Ranker training. We crop the point cloud to the range of ×3 of the box size, and predict the IoU and the offset from the 850
object. To prepare the training data, we take the first two frames for each of the 20 clips. We then sample approximately 851
100 boxes around each ground-truth label, crop out the point cloud around the sampled boxes to serve as training input, and 852
compute the IoU and offset information for labels of the training set. During the ranker training, we also simulate random 853
occlusion and point dropping. For the design of the loss function, we use a weighted combination: Ltotal = 5 ∗ LIoU + Loffset. 854
Here, the IoU loss LIoU is defined by the mean squared error between ŷ and y, where ŷ denotes estimated IoU and y denotes 855
the actual IoU. For the offset prediction loss, since we only use the offset from the top-k boxes, the offset will most likely be 856
applied to high IoU candidate boxes with smaller offset values, as shown in Fig. S2. As such, we are able to prevent training 857
samples with lower IoU and larger offsets from dominating the training process. Based on this observation, we test several 858
different loss functions and see that the ranker performed best using Smooth L1 loss, without adjusting for the sampled box’s 859
offset loss if the IoU is less than 0.3. 860
Ranker inference. For the ranker refinement module, we sample N = 512 boxes in total for both sampling strategies. In 861
the naive sampling strategy, 512 boxes are sampled using Gaussian distributions with translational noise (on xyz) having a 862
standard deviation of 1, and scaling and rotational noise (on lwh, yaw) having a standard deviation of 0.1, all with a mean of 863
zero. For the C2F sampling, we employ both coarse and fine sampling. During coarse sampling, noise is uniformly sampled 864
from [−1.0, 1.0] for xy and from a Gaussian distribution with a standard deviation of 0.5 for z to help us sample N

2 = 256 865
boxes. We then select the top k = 3 boxes based on the IoU reported by the ranker, apply the predicted offsets to these boxes, 866
and proceed to sample a total of 256 boxes around each candidate for the fine sampling stage. In this stage, translational noise 867
is sampled from a Gaussian distribution with a standard deviation of 0.25, noise for height and width with a standard deviation 868
of 0.2, length with a standard deviation of 0.4, and rotational noise with a standard deviation of 0.1. We ultimately select the 869
box with the highest IoU among all 256 sampled boxes and apply the predicted offset to obtain the refined label. 870

S3. Additional Empirical Studies 871

S3.1. Comparison to semi-supervised method 872

Table S1. Experiments on semi-supervised approach. Our method and the semi-supervised method, 3DIoUMatch [41], can complement
each other. The performance is reported on AP at IoU 0.7. * and † indicate supervision and approach, respectively.

labeled 40 frames∗ R’s pred∗ 3DIoUMatch† Ranker (Sec. 3.3)† Curriculum (Sec. 3.4)† 0-30m 30-50m 50-80m 0-80m

➀ ✓ ✓ 60.7 24.4 6.0 37.1
➁ ✓ ✓ ✓ ✓ 65.1 34.1 12.6 41.7
➂ ✓ ✓ ✓ ✓ 60.6 30.7 8.6 39.5
➃ ✓ ✓ ✓ ✓ ✓ 68.1 36.8 12.9 44.4

We investigate a direct semi-supervised approach, using the 40 annotated frames and other unannotated frames of the 873
ego car’s data to train the detector. We apply 3DIoUMatch [41], a widely used and representative semi-supervised learning 874
approach in this setting. We note that the official code of 3DIoUMatch used the PV-RCNN detector [38], not the PointPillar 875
detector [20] in our main paper. As such, we rerun our approach using the PV-RCNN detector for a fair comparison. 876
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Figure S2. Top IoU predicted from sampled boxes by ranker. We computed the statistics for the IoU of the sampled boxes selected by the
ranker during refinement. Then, the offset predicted by the ranker was applied to these selected boxes. The result indicates that the offset is
most frequently used when the IoU of the box is sufficiently high.

Table S1 summarizes the results. ➀ is the result of 3DIoUMatch, and ➁ is the result of our approach (cf ., Table 2 ➉, but877
using PV-RCNN as the detector). We see that our approach outperforms 3DIoUMatch, demonstrating the value of using878
reference cars’ predictions as auxiliary supervisions.879

More importantly, we explore complementary nature of the two approaches. Specifically, we use our ranker to refine880
reference cars’ predictions and add those high-quality ones (i.e., <40 meters, defined in Sec. 3.4) as extra labels to 3DIoUMatch.881
➂ shows the results: we see a 2.4% boost in 0-80 meters against ➀, justifying the compatibility of ours and 3DIoUMatch. On882
top of ➂, we further apply our distance-based curriculum for self-training (Sec. 3.4), using 3DIoUMatch’s predictions on all883
the data as pseudo labels to re-train the detector. ➃ shows the results: we see another 4.9% boost against ➂ and 2.7% boost884
against ➁. In sum, these results demonstrate 1) the effectiveness of our approach in leveraging reference cars’ predictions as885
supervision (➂ and ➁ vs.➀) and 2) the compatibility of our approach with existing direct semi-supervised learning approaches886
to further boost the accuracy (➃ vs.➂ and ➁). We view such compatibility as a notable strength: it demonstrates our approach887
as a valuable add-on when nearby agents’ predictions are available.888

S3.2. Effect of the number of training data889

Table S2. Number of training data and performance.

AP @ IoU

# clips 0.5 0.7

5 17.1 6.7
10 37.3 16.1
15 41.3 18.2
20 47.1 21.1

We conduct experiment to investigate how much the number of training data collected by following nearby agents could890
benefit the detector’s final performance. In doing so, we train detectors with four different numbers of training clips, including891
5, 10, 15, and 20, and report the overall AP at IoU of 0.5 and 0.7. The result in Table S2 shows that the performance consistently892
improves as the ego car collects more data (pseudo labels) from nearby agents. This again highlights the effectiveness of our893
newly explored scenario of learning from nearby agents’ predictions.894

14



ICCV DriveX
Workshop

#1

ICCV DriveX
Workshop

#1ICCV DriveX Workshop 2025 Submission #1. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

GT box center
Predicted best

0.0

0.2

0.4

0.6

0.8

1.0

Ra
nk

er
 Io

U 
Pr

ed
ict

io
n 

in
 R

eg
io

n

Figure S3. Ranker IoU prediction behavior. We visualize the IoU predicted by the ranker on sampled boxes versus the actual ground-truth
location. We see that our ranker trained with a handful of annotated frames successfully refines initially mislocalized boxes by giving high
scores to samples with more accurate box centers.

Table S3. Detector performance on the ideal case. R&B-POP also brings meaningful performance gain in the ideal scenario where the
object detector can directly be shared.

AP @ IoU 0.7

method 0-30m 30-50m 50-80m 0-80m

sharing detector 56.3 29.0 14.9 40.1
+ R&B-POP 60.9 32.3 17.8 44.4

S3.3. Analysis on sharing detector 895

Our study introduces a novel learning scenario to build the detector by sharing object box predictions from the reference cars, 896
which is realistic and practical. As shown in Table 1 in the main paper, the pseudo label quality achieved by R&B-POP is as 897
competitive as directly sharing detector, which the scenario faces various constraints (cf ., Sec. 1, Sec. 3.1). In this section, 898
to investigate if our method can still improve such cases, we apply our algorithm on top of the object detector shared from 899
the reference car. As shown in Table S3, we observe further performance gain benefit from additional high-quality pseudo 900
labels provided by the reference car in combination with our algorithm. We note that the overall performance is higher than 901
Table 2 in the main paper, as the train and test sets share the same distribution (i.e., clips 1-20 in Fig. 8 in the main paper). This 902
highlights the effectiveness of our study of learning from reference agents’ predictions beyond a single agent. 903

S3.4. Additional Analysis on ranker 904

S3.4.1. Visualization of predicted scores 905

In the ranker training ablation study in our main manuscript, we mention our ranker design performs well with as little as 906
40 annotated frames. To illustrate its effectiveness further, we visualize the IoU prediction on sampled boxes vs. the actual 907
location of the ground-truth as shown in Fig. S3. We observe that IoUs predicted by our ranker are consistent, and boxes with 908
the highest predicted IoUs are close to the ground-truth. Moreover, the result implies that the ranker can effectively remove the 909
false positives, as the region far away from the actual object tends to be given a lower score. 910

S3.4.2. Ranker on high density of objects 911

To analyze the behavior of our ranker when objects are close, we carefully select examples where cars are close to each other 912
(i.e., within 2.5 meters of the box centers). We note that while the coarse sampling strategy considers translations of one to two 913
meters, compared to the closest centers of two cars (i.e., 2.5 meters), such translations do not necessarily misassign a box to a 914
nearby car. We see that if the reference car predicts a box for each of the two nearby cars, our method can successfully recall 915
both of them. Fig. S4 demonstrates the ranker’s performance in correctly identifying and selecting the appropriate vehicles in 916
the coarse sampling stage. 917

Indeed, the purpose of the ranker is to refine the noisy pseudo labels from the reference to the correct location, size, and 918
pose with respect to the ego agent’s view (cf ., Sec. 3.2). Therefore, even if the reference only predicts a single box or two 919
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(a) Real example of a scenario where two objects with the
same category are close.

Initial noisy box
Top-5 candidate boxes
GT boxes

(b) Visualization of the ranker refinement. Given an initial box assigned to a certain object, our
ranker correctly identifies and selects the appropriate objects.

Figure S4. Additional experiments on a high density of objects.

predicted boxes are refined to the same car, leaving one false negative, our subsequent curriculum self-training is capable of920
discovering the remaining object.921

S3.4.3. Extension to multi-class922

Table S4. Extension of ranker to multi-class refinement.

car truck

pseudo label rec. / prec. rec. / prec.

initial boxes 56.1 / 71.0 57.2 / 61.0
+ our refinement 60.6 / 76.7 64.2 / 68.4

In the main paper, we focus on a single category that includes various vehicles (e.g., cars, trucks). Still, the pipeline923
proposed in the main paper is model-agnostic, meaning it can handle both single-class and multi-class detection. The key is to924
train separate rankers to capture class-specific information (e.g., sizes, shapes) to provide high-quality pseudo labels for the925
subsequent distance-based curriculum self-training.926

Therefore, we explore the multi-class setup by further separating regular cars and trucks in V2V4Real [53] and employing927
car-specific and truck-specific rankers, respectively. As shown in Table S4, we observe significant improvements in label928
quality for both classes. Additionally, we conduct a study with selecting cases where nearby objects belong to different929
categories (i.e., car vs. truck). This is considered challenging because cars and trucks have similar shapes but differ mainly in930
size. As shown in Fig. S5, we see that the two rankers capture class-specific information and score boxes of different sizes931
differently, for example, the car ranker gives smaller-size boxes a higher score. We believe such a property would reduce the932
chance of mistakenly assigning a box of one class to a nearby object of a different class. Moreover, by experimenting with933
tens of such cases with nearby objects of different classes, we find that the class-specific rankers can correctly maintain class934
distinctions (i.e., not flipping the classes) with 72.5%, indicating that the rankers effectively capture class-specific information935
to provide high-quality pseudo labels.936

S3.5. Additional Analysis on self-training937

S3.5.1. Combining different sets of pseudo labels938

Table S5. Anaylsis on pseudo label combination during self-training. †distance-based curation: using only R’s predictions within its 40m.

AP @ IoU 0.5

using R’s pred distance-based curation† 0-30m 30-50m 50-80m 0-80m

x (main paper) - 73.3 43.3 23.3 56.5
o x 71.8 41.5 26.5 55.1
o o 74.5 42.0 25.1 57.0
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(a) Real example of a scenario where two objects with dif-
ferent categories (‘car’ and ‘truck’) are close.

Car Ranker: 0.84

Car Ranker: 0.43

Car Ranker: 0.33

Truck Ranker: 0.28

Truck Ranker: 0.80

Truck Ranker: 0.32

Car GT
Truck GT
Initial Box

(b) Visualization of two class-specific rankers (i.e., car ranker and truck ranker). Each ranker
assigns different scores to different bounding boxes but predicts the highest score for the
desired class.

Figure S5. Additional experiments on multi-class for ranker.

In the main paper, we propose to utilze the predicted output of the trained detector, rather than the initially provided 939
predictions from the reference car. In this section, we investigate different combining strategies. First, we naively combined 940
the ego’s and reference’s predictions in Stage 2. As shown in Table S5, the overall performance (0-80m) dropped from 56.5 941
(row 1) to 55.1 (row 2). However, we also observe that the performance in the 50-80m range increased from 23.3 to 26.5. We 942
hypothesize that predictions closer to the ego agent are actually farther from the reference, introducing noisier pseudo labels 943
for the ego agent with the naive solution. Conversely, the reference provides more confident predictions for objects closer 944
to it, which are farther from the ego-agent. Based on this assumption, we further explore a simple distance-based curation 945
strategy, combining only predictions within 40m of the reference. As shown in the table, this approach improves the overall 946
performance (0-80m) from 56.5 (row 1) to 57.0 (row 3) and maintained the performance in the 0-30m range (73.3 vs 74.5). 947
These simple experiments demonstrate the potential for many interesting ideas that can be built upon our proposed learning 948
scenario, and we leave it for the future study. 949

S3.6. Additional Results on Other Dataset 950

Table S6. Additional experimental results on OPV2V dataset [52]. The performance is reported on PointPillars [20] with 64-beam
LiDAR. The evaluation metric is AP at IoU 0.5. : uses GT labels.

time delay = 1 time delay = 2

pseudo label box refinement self-training 0-30m 30-50m 50-80m 0-80m 0-30m 30-50m 50-80m 0-80m

➀ R’s pred - - 84.4 62.7 31.1 71.7 80.9 58.6 22.0 67.3
➁ R’s GT - - 86.7 65.7 33.6 74.2 84.7 65.1 27.8 72.0

➂ R’s pred ranker - 92.3 68.4 26.1 77.0 91.1 62.2 18.6 73.5
➃ R’s pred - distance-based curriculum 94.4 74.7 28.2 80.8 94.1 72.8 28.0 79.9
➄ R’s pred ranker distance-based curriculum 96.1 77.4 34.6 83.2 95.3 74.3 31.9 81.4

♣ E’s GT - - 97.6 89.4 68.4 90.8 97.6 89.4 68.4 90.8

In the main paper, we conduct experiments on the real-world dataset, V2V4Real [53]. To see the generalizability of R&B- 951
POP, we also evaluate our method on OPV2V [52], a simulation dataset containing 2∼7 connected cars within the scene. To 952
suit our study, we re-split the entire 69 clips into 33 and 36 similar to Fig. 8 in the main paper. Also, we only use frames 953
where the distance between the ego car and the reference car is within 90m. To simulate real-world noise, we sample random 954
Gaussian noise with a zero mean and 0.2 standard deviation for localization error and consider a time delay of one and two 955
frames. We set the training epoch to 15, and other hyperparameters remain the same. We use a total of 72 frames for the ranker 956
training, which is two frames per ego car training clip. As shown in Table S6, we see that R&B-POP consistently improves 957
performance on different data and settings, witnessing the general applicability of our method. 958
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Table S7. Experiments on the number of reference cars. Detection performance improves further as the number of reference cars
increases. The evaluation metric is AP at IoU 0.5.

time delay = 1 time delay = 2

# reference car 0-30m 30-50m 50-80m 0-80m 0-30m 30-50m 50-80m 0-80m

1 96.1 77.4 34.6 83.2 95.3 74.3 31.9 81.4
2 94.3 78.2 43.5 83.4 96.1 79.1 38.6 84.0

: reference car : R’s pred : a fter refinement

Figure S6. Additional qualitative results of our ranker.

S3.6.1. Multiple reference cars959

Since OPV2V [52] has scenes with more than one reference car, we investigate the relationship between the number of960
reference cars and detection performance. We use non-maximum suppression with a ranker score to combine two sets of961
pseudo labels. As shown in Table S7, we see that leveraging the predicted boxes from more reference cars improves final962
detection performance as different sets of pseudo labels from different views can supplement each other.963

S3.7. Additional Qualitative Results964

We provide additional visual results on V2V4Real [53] in Fig. S6 and Fig. S7. Notably, our pipeline improves pseudo label965
quality by adjusting mislocalization and by discovering and filtering out boxes appropriately.966
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: reference car : R’s pred : after refinement : after self-training : E’s GT
Figure S7. Additional qualitative results of our overall pipeline.
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