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Figure 1. HetroD is a high-fidelity, drone-captured dataset that highlights culturally grounded maneuvers such as hook turns, aggressive
overtakes, queue cutting, and congested crossings and illustrates dense, fine-grained interactions among cars, scooters, cyclists, and pedes-
trians. We establish a unified benchmark and systematically evaluate the performance of existing algorithms in agent planning, motion
prediction, traffic simulation, and cross-domain evaluation in dense and heterogeneous traffic environments.

Abstract

We present HetroD, a dataset and benchmark for develop-
ing autonomous driving systems in dense, heterogeneous
environments. Unlike many prior datasets focused on lane-
disciplined traffic, HetroD captures culturally grounded be-
haviors such as hook turns, lane splitting, and informal
right-of-way negotiation. It comprises over 65.4 k agent tra-
jectories (cars, scooters, buses, cyclists, and pedestrians)
with centimeter-accurate annotations, HD maps, traffic sig-
nal states, and a modular toolchain for extracting per-agent
scenarios. This work enables modeling behaviors of vulner-
able road users (VRUs) in heterogeneous traffic and con-
structs standardized benchmarks for forecasting, planning,
simulation, and multi-agent behavior modeling. Prelimi-
nary results show that state-of-the-art models trained on

existing datasets struggle to generalize, revealing key limi-
tations in handling heterogeneous traffic.

1. Introduction
Navigating heterogeneous traffic remains one of the core
challenges in the development of autonomous driving sys-
tems. In many dense urban centers worldwide, cars, scoot-
ers, bicycles, and pedestrians compete for limited road
space and negotiate right-of-way through subtle and often
culturally embedded cues [6]. Yet most publicly available
datasets still primarily capture lane-disciplined traffic and
model agents as independent [24], thereby underrepresent-
ing culturally grounded, interaction-rich behaviors. As a re-
sult, downstream models and widely used simulators inherit
these biases: they either hard-code simplified vulnerable
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Table 1. Comparison of Datasets on Interaction, Density & Diversity Metrics. We report key statistics across vehicle and drone-
view datasets. Interaction Density1 measures the number of agent pairs within a scenario whose time-to-collision (TTC) [39] is below
a threshold τ . Interaction Scale2 is the total number of such interactions, computed collectively over all datasets. Heterogeneous
Interaction Scale3 counts interactions between agents of different types, computed collectively over all datasets. Geographical Density4

represents the average number of agents per unit area A within an 8-second window. Type Diversity5 captures the type-level diversity
within a scene using the Gini–Simpson index. All metric values are normalized to [0,1] across datasets for direct comparison.

Dataset Platform Tracks Duration Interaction
Density

Interaction
Scale

Heterogeneous
Inter. Scale

Geo.
Density

Type
Diversity

NuScenes [4] On-board ∼90k† 320h — 0.642 0.286 — —
Waymo [36] On-board 7.6M 574h — 1.000 0.423 — —
Argoverse2 [41] On-board 13.9M 763h — 0.567 0.151 — —
NuPlan [5] On-board ∼5M† 1282h — 0.891 0.202 — —

INTERACTION [50] Drone 40k 16.5h 0.008 0.183 — 0.011 —
inD [2] Drone 13.5k 10h 0.010 0.122 0.164 0.023 0.584
SinD [45] Drone 13.2k 7.02h 0.012 0.175 0.344 0.016 0.742
HetroD Drone 65.4k 17.5h 0.029 0.718 1.000 0.026 0.642
† Estimated values based on official statistics.
— Metric not available.
1 Dinter =

∑
i,j 1TTCi,j<2 s.

2 Sinter =
∑

scenarios Dinter.

3 Shet =
∑

scenarios

∑
i,j 1(TTCi,j<2 s∧typei ̸=typej)

.
4 Dgeo = N/A, where N is the number of agents within an 8s window and
A is the corresponding area.
5 Htype = 1−

∑
c p

2
c , where pc is the proportion of agents of type c.

road user (VRU) templates [25] or merely replay recorded
trajectories [5, 15], which limits their ability to capture re-
active dynamics. These limitations are further analyzed in
Section 2.

This gap between current datasets and real-world scenes
calls for data that captures the informal, high-density in-
teractions typical of mixed-agent traffic environments. To
bridge this gap, we introduce HetroD, a drone-captured
dataset collected across six topologically diverse, high-
traffic urban locations in Taiwan. Compared to prior
datasets, HetroD offers: High interaction density: records
up to three-fold higher cross-agent interaction counts than
any drone dataset; Motion diversity: culturally grounded
behaviors such as hook turns, lane splitting, and aggres-
sive overtakes; and Topological breadth: six intersection
archetypes with centimeter-accurate HD maps, bounding
boxes, and signal states. Together, these traits close the data
gap and position HetroD as a realistic testbed for developing
autonomous driving systems in dense, culturally heteroge-
neous traffic.

Our contributions are: (i) a 17.5-hour drone dataset fea-
turing over 65.4 k agent tracks and centimeter-level an-
notations of heterogeneous traffic; (ii) a benchmark suite
comprising heterogeneous scenarios, task baselines, and
a plug-and-play conversion toolchain; and(iii) evidence
that HetroD reveals common failure modes of current
state-of-the-art methods in heterogeneous-traffic environ-
ments.

2. Related Work
Autonomous driving datasets vary by sensing modality and
deployment context. We group related work into four cate-
gories: on-board, infrastructure-view, drone-view datasets,
and unified learning frameworks built upon them.
On-Board Sensor Datasets. [4, 9, 13, 14, 16, 31, 36, 41,
43, 47, 51] offer rich multimodal data but suffer from occlu-
sions and limited VRU coverage in dense traffic [4, 13, 36].
While METEOR [7] pioneered heterogeneous traffic cap-
ture, it lacks HD maps and comprehensive annotations, re-
sulting in car-centric data that underrepresents reactive in-
teractions.
Infrastructure-View Datasets. [21, 30, 42, 44, 46, 48, 49,
53, 54] use fixed cameras or V2X sensors to reduce occlu-
sion, but often lack resolution [30, 49], calibration [42, 53],
or class diversity [21, 48], limiting their utility for modeling
cross-type agent behaviors.
Drone-View Datasets. [2, 3, 11, 19, 20, 26–28, 32, 35,
37, 45, 50, 52] provide occlusion-free, global views ideal
for interaction analysis. However, many are collected in
lane-disciplined settings [19, 35]; lack standardized sce-
nario formats; and exhibit fragmented VRU tracks due to
small-object tracking limitations [1, 11]. They also under-
represent fine-grained behaviors such as informal yielding,
weaving, or reverse flows. To the best of our knowledge,
no existing public drone dataset provides both per-agent,
centimeter-accurate ground truth and wide-area coverage
across diverse, heterogeneous urban environments, limiting
their applicability to safety-critical or VRU-aware tasks.
Unified Learning Frameworks. [8, 12, 17, 18, 22,
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Figure 2. We develop a standardized toolkit that converts a wide
range of traffic scene datasets into standardized, agent-centric data
formats [8, 17, 18, 23], enabling seamless comparisons across
datasets for forecasting, planning, and simulation.

23, 40] standardize interfaces for learning and simulation,
rely on high-quality upstream data (especially fine-grained,
interaction-aware trajectories and agent-centric scenarios).
However, the toolchains required to produce such struc-
tured annotations remain underdeveloped in existing drone
datasets, limiting their utility for downstream tasks.
In contrast, HetroD is designed to close these gaps by offer-
ing dense, heterogeneous scenarios with high-fidelity anno-
tations, cultural motion diversity, and plug-and-play com-
patibility (see Figure 2).

3. The HetroD Dataset
HetroD is a large-scale drone-view dataset comprising
17.5 hours of ultra-high-resolution (5.4K) video, collected
across six topologically and behaviorally distinct urban sites
in Taiwan. It includes over 65.4 k unique trajectories span-
ning signalized intersections, unsignalized merging zones,
and densely mixed corridors, traffic archetypes rarely rep-
resented together in existing datasets.

To meaningfully quantify traffic complexity in dense,

HetroD

inD SinD

Figure 3. Cross-Type Interaction Chord Diagrams. With
equal-length sampled scenarios, each chord shows the number
of interactions between agent types, grouped by time-to-collision
(TTC) [39] ranges (0–1, 1–2, 2–3, 3–4, 4–5 s). HetroD exhibits
denser, riskier cross-type interactions, especially among vehicles,
cyclists, and pedestrians.

heterogeneous settings, we introduce five normalized
principled metrics that capture spatial, behavioral, and
interaction-level diversity (Table 1). These metrics (rang-
ing from interaction density to type diversity) are com-
puted from 1000 uniformly sampled 8-second scenarios per
dataset (per-scenario metrics), or over full dataset coverage
(scale metrics). Together, they support robust comparison
across platforms and traffic domains.
Key insights. (1) Dataset scale and interaction complexity:
HetroD contains the largest number of unique agent tracks
among existing drone-view datasets, and exhibits the high-
est interaction density and heterogeneous interaction scale
(Table 1). (2) Cultural and behavioral richness: While
SinD [45] offers a balanced distribution of agent types, Het-
roD presents a unique setting where scooters are as preva-
lent as cars, reflecting traffic patterns not captured in prior
datasets. These agents demonstrate culturally grounded be-
haviors such as weaving, filtering, and informal negotia-
tion, rarely modeled at scale. Risk indicators like TTC [39]
and DRAC [33] reveal significantly higher latent conflict
rates (see Figure 3). (3) Modeling utility: Motion predic-
tion experiments show large distributional shifts triggered
by rare maneuvers (e.g., informal U-turns, reverse flows),
highlighting the need for datasets that capture such diver-
sity.

Leveraging this diversity, HetroD fills a long-standing
gap in heterogeneous-traffic modeling and unlocks two piv-
otal research axes: (i) High-fidelity heterogeneous-traffic
simulation (from full-scene replay to reactive VRU mod-
eling); (ii) VRU motion prediction and cross-domain gener-



alization, enabling out-of-distribution testing on rare, cul-
turally grounded maneuvers.

4. Evaluation
We construct a set of challenging per-agent scenarios from
HetroD. Specifically, we sample agents exhibiting non-
trivial behavior such as long traversals, abrupt heading
changes, and dense interactions within multi-agent con-
texts. These selected agents are used to instantiate per-agent
scenarios for evaluation.

4.1. Motion Forecasting
We evaluate cross-dataset generalization of two state-of-
the-art predictors (MTR [34] and Wayformer [29]) on Het-
roD. Following the UniTraj [12] protocol, models trained
on Waymo, Argoverse 2, and NuScenes are directly eval-
uated on HetroD using the Brier FDE [41] metric. As
shown in Table 2, both models exhibit significant perfor-
mance drops; MTR performs better likely due to its anchor-
based decoding, which offers greater robustness in uncer-
tain, cluttered scenes. In contrast, Wayformer heavily over-
predicts, particularly for agile agents such as cyclists, in-
dicating transformer-based methods are sensitive to dense,
visually cluttered scenes.

These results demonstrate a fundamental limitation of
existing forecasting models when confronted with hetero-
geneous, culturally diverse traffic, emphasizing the need for
methods explicitly designed to capture dense agent interac-
tions.

Table 2. Cross-dataset evaluation (Brier FDE ↓) of MTR [34]
and Wayformer [29], trained on large-scale datasets and evaluated
on HetroD. Bold indicates worst-case generalization.

MTR-NuScenes MTR-Waymo* MTR-AV2

NuScenes 2.82 3.16 4.17
SinD 5.87 4.61 4.28
HetroD 10.98 9.05 4.92

Wayformer-NuScenes Wayformer-Waymo* Wayformer-AV2

Argoverse2 4.02 2.74 2.41
SinD 5.00 3.75 3.60
HetroD 12.69 16.04 12.15

Waymo* uses only 30% of original training data due to resource constraints.

4.2. Agent Planning
We evaluate planning performance on HetroD, comparing
two rule-based planners: the standard Intelligent Driver
Model (IDM) [38] and PDM [10], a top-performing plan-
ner from the NuPlan benchmark [5, 15], implemented using
the V-Max [8] framework. To better reflect the challenges
of VRU interactions, we extend the evaluation by incorpo-
rating a VRU-specific collision metric (tracking side and
lateral collisions involving cyclists and pedestrians), cru-
cial in scenes with overtakes and unstructured flows where
forward-collision checks fall short.

As shown in Table 3, both rule-based planners exhibit
performance drops on HetroD compared to NuPlan, includ-
ing increased VRU collisions and reduced comfort scores,
despite high centerline compliance and speed. As detailed
in Table 4, collisions in HetroD frequently involve lateral
interactions, which traditional planners (e.g., PDM, IDM),
optimized for structured, car-centric settings are unable to
anticipate. These findings highlight a critical gap: rule-
based planners fail to account for lateral VRU interactions
required for safe navigation in dense, heterogeneous traffic,
emphasizing the need for interaction-aware planning meth-
ods. Further experiments and detailed ablations will ap-
pear in the full version of this paper.

Table 3. Closed-Loop Non-Reactive Planning Evaluation in
Heterogeneous Traffic Our experiments show that rule-based
planners (IDM and PDM) have difficulty handling lateral inter-
actions and avoiding collisions with vulnerable road users in the
HetroD scenario. To ensure a fair comparison, we disabled the
off-road penalty in NuPlan’s aggregate score, because in dense,
high-flow situations these planners rigidly follow map centerlines
without adaptive behavior, making off-road violations far more
likely.

Dataset Planner NuPlan
Score ↑

TTC
Within Bound ↑

Progress
Ratio ↑

Multiple
Lane Score ↑ Comfort ↑ At-Fault

Collision ↓

NuPlan
IDM 0.81 0.94 0.92 0.98 0.46 0.02
PDM-Closed 0.82 0.97 0.91 0.99 0.29 0.008

HetroD
IDM 0.75 0.88 0.89 0.94 0.29 0.066
PDM-Closed 0.71 0.93 0.85 0.95 0.03 0.051

Table 4. VRU Collision Types in Planning Results. HetroD ex-
poses planners to a high rate of lateral VRU collisions, reflecting
unstructured, high-density scenarios such as lane splitting and par-
allel overtaking. These cases reveal key blind spots of rule-based
planning methods, demonstrating HetroD’s value for detailed di-
agnostic analysis and the development of interaction-aware traffic
policies.

Planner At-Fault
Collisions

VRU Front
Collisions

VRU Lateral
Collisions

IDM 0.066 0.008 0.036
PDM-Closed 0.051 0.005 0.036

5. Conclusions

HetroD enables structured benchmarking in heterogeneous
traffic with vulnerable road users (VRUs), addressing key
gaps in existing datasets. It pairs high-fidelity annotations
with a modular toolchain for agent-centric scenario extrac-
tion. Results show that state-of-the-art models struggle to
generalize in dense, mixed-agent settings, highlighting the
need for interaction-aware learning and simulation in het-
erogeneous traffic.
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