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Abstract

Ensuring autonomous vehicle (AV) safety requires test-
ing across diverse traffic scenarios, yet real-world data col-
lection is costly and rarely captures safety-critical events.
Simulation enables scalable evaluation, but defining and
annotating realistic scenarios remains a challenge. Logical
scenarios are parameterized representations of traffic situa-
tions that specify agent behavior and environmental context,
enabling structured and repeatable testing across a wide
range of conditions. We construct a multi-view dataset by
combining scenario templates with varied parameters and
rendering them from ego, drone, and infrastructure view-
points. To support scalable high-level annotation, we eval-
uate several Large Vision-Language Models (LVLMs) on
the task of video-level scenario categorization. While most
models struggle with structured classification, performance
improves for select models when using prompting strategies
and aerial views. Our findings reveal both the limitations
and emerging potential of LVLMs in supporting semantic
scenario understanding for autonomous driving.

1. Introduction
Validating autonomous vehicle (AV) safety is challenging
because critical events are rare in real-world data and dif-
ficult to observe systematically. Large-scale testing across
diverse locations, conditions, and rare scenarios is expen-
sive, time-consuming, and often impractical. Simulation
offers a safer, more scalable alternative, especially for eval-
uating V2X-based cooperative systems that combine infras-
tructure, onboard, and aerial perception. Scenario-based
methods enable systematic evaluation by partitioning the
operational design domain (ODD) into parameterized traf-
fic situations defined by constraints on environment, agent
behavior, and road geometry.

Scenario-based simulation enables targeted testing of
specific configurations and edge cases under controlled con-
ditions, but defining parameterized logical scenarios that
reflect the real world presents significant challenges. De-
termining parameter ranges that reflect real-world diversity
and frequency is difficult without extensive real-world data.

(a) Lead vehicle braking and ego
lane change. Picture credit: [13].
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(b) Parametrized following scenario.
Picture credit: [23].

Figure 1. Examples of logical scenarios. (a) illustrates semantic
composition using behavioral tags, and (b) shows numerical pa-
rameter ranges for road geometry and agent configuration.

Examples of logical scenarios and their parameterizations
are illustrated in Fig. 1, highlighting both semantic compo-
sition and numerical parameter specification.

To define realistic parameter ranges for simulation, it is
necessary to capture the complex dynamics of real-world
traffic. Ego-centric, single-view perception is limited by oc-
clusion and narrow field of view, making cooperative V2X
perception essential. By fusing data from heterogeneous
sensors, V2X systems create high-fidelity representations
of traffic scenes. Extracting parameter distributions from
continuous V2X video requires accurate spatiotemporal cal-
ibration across sensors [34] and robust retrieval methods to
ground entities and events in raw multimodal data [12].

Scene annotation for scenario-based validation relies
on two complementary label types. Low-level annota-
tions, including agent positions, velocities, and trajecto-
ries, support parameter extraction and dominate existing
datasets [7, 14, 27], which focus on detection, tracking, and
motion prediction. High-level semantic labels instead de-
scribe the overall traffic situation, such as a vehicle turning
at an intersection or merging into a lane. These enable logi-
cal scenario classification, crucial for structured testing and
systematic ODD coverage [13, 28]. However, manual la-
beling is time-consuming and hard to scale. This work aims
to automate high-level annotation with LVLMs to support
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scalable scenario-based validation in autonomous driving.
To address scalable semantic annotation, we propose

leveraging LVLMs for high-level scenario understanding.
Unlike traditional classifiers that require retraining for new
categories, LVLMs trained on large, diverse datasets enable
zero-shot generalization to unseen scenarios without fine-
tuning. This reduces the manual effort and cost of expand-
ing scenario taxonomies. Recent LVLMs, including pro-
prietary models like GPT-4o [1] and open-source variants
such as Qwen-VL [5], show strong vision-language reason-
ing performance. We explore their use for video-level clas-
sification of traffic scenes into logical scenarios, aiming to
enable scalable semantic annotation for scenario-based val-
idation in autonomous driving.

2. Related Work

2.1. Visual Understanding of Traffic Scenes
Visual scene understanding has evolved from image classi-
fication and object detection to more structured and dense
prediction tasks. While models such as ResNet [15],
DETR [10], and Mask R-CNN [16] have advanced object-
level perception, they offer limited support for holistic traf-
fic scene interpretation. Semantic, instance, and panoptic
segmentation further improve granularity, yet rely heavily
on dense annotations and task-specific architectures, con-
straining generalization across diverse environments.

To better capture relationships between entities, recent
approaches incorporate relational modeling. Scene graph
generation methods like RelTR [11] introduce relational
representations between objects. In traffic domains, re-
cent work has focused on modeling interactions and dynam-
ics [32]. For instance, Action Slot [18] leverages slot atten-
tion to capture motion-aware, object-centric features, while
DAGCN [19] performs action recognition using 3D pose-
based relational reasoning. Other efforts reconstruct road
topology from egocentric images [9], translating onboard
views into structured bird’s-eye-view graphs that incorpo-
rate semantics, object locations, and connectivity [8, 20].

Despite progress in perception and relational modeling,
existing methods struggle with generalization in diverse
traffic conditions. Scenario categorization offers a high-
level understanding of traffic scenes by abstracting agent
behaviors and context into semantic labels. We investigate
the use of vision-language foundation models to automate
this process in cooperative V2X settings, enabling scalable
annotation without task-specific supervision.

2.2. Vision-Language Models
While task-specific perception models have made signif-
icant progress, they often struggle to generalize to long-
tail and complex real-world traffic scenarios. Recent stud-
ies have shown that standard object detection models ex-

hibit severe performance drops when evaluated on in-the-
wild traffic datasets, highlighting a persistent generalization
gap [2]. These challenges motivate the use of more flexible,
data-efficient models that can adapt to diverse visual con-
texts with minimal supervision.

Vision-Language Models (VLMs) offer this flexibility
through large-scale multimodal pretraining, enabling open-
vocabulary recognition, zero-shot generalization, and high-
level reasoning. Recent models extend these capabili-
ties to video. Video-LLaMA [30] introduces a Q-Former
for aligning temporal and audio-visual features with lan-
guage. Video-LLaVA [21] unifies image and video inputs
into a shared representation. InternLM-XComposer [31]
treats video as high-resolution composite images for dense
temporal reasoning. Qwen2.5-VL [4] incorporates dy-
namic frame-rate processing and absolute time encoding for
long-range event localization. Cosmos-Reason1 [25] adds
physics-aware reasoning via supervised fine-tuning and re-
inforcement learning.

Collectively, these VLMs introduce new capabilities that
go beyond detection or segmentation, offering interpretable
and adaptable perception suitable for open-world driving
environments. Their ability to infer semantic roles, model
agent interactions, and generalize across unseen contexts
positions them as a foundational component for robust and
scalable autonomous driving systems.

2.3. Benchmarks for Vision-Language Models in
Traffic Scenes

Despite growing interest in applying VLMs to driving, ex-
isting benchmarks fail to capture the temporal and be-
havioral complexity of real-world traffic. Most rely on
static, single-frame inputs, overlooking the sequential con-
text essential for dynamic scenes. Video datasets such as
DRAMA [22] provide annotated driving clips with spatio-
temporal events but lack scenario categorization and sup-
port for high-level reasoning. TUMTraffic-VideoQA [33]
extends evaluation to video question answering but remains
limited to short-span queries without structured behavioral
coverage. Other efforts [24] emphasize temporal consis-
tency but omit agent behavior, while nuScenes-QA [26]
frames understanding as QA without addressing scene clas-
sification or interaction modeling. These gaps highlight the
need for temporally grounded, behavior-rich benchmarks to
evaluate VLMs in complex traffic environments.

3. Methodology

3.1. Dataset Construction
We collected a V2X dataset by manually defining 20 ba-
sic logical scenarios, each with predefined parameter ranges
and involving only a single agent. Complex scenarios are
constructed by combining these basic scenarios with var-
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Figure 2. Evaluation pipeline for different VLMs. The or-
der from top to bottom are Cosmos-Reason1 [25], InternLM-
XComposer-2.5 [31], Qwen2.5-VL [4], VideoLLaMA 2 [30],
Video-LLaVA [21]. The input is a video of a traffic scene, ei-
ther ego-front view or drone-view, and the output is the predicted
agent behavior. The model is prompted to reason about the scene
and classify the agent’s behavior into one of six categories.

ied parameters, resulting in 9K OpenSCENARIO-format
files. We use esmini (an OpenSCENARIO player) [17] to
replay these scenarios while simultaneously synthesizing
novel multi-view video data.

Each scenario is rendered from 10 distinct viewpoints:
six surrounding the ego-vehicle, three drone perspectives at
different angle, and one fixed infrastructure camera view.

Because each scenario is built from predefined logi-
cal templates, we have ground-truth annotations describing
agent behavior. Initially, we defined 20 behavior categories,
but due to semantic overlap and difficulty in clearly distin-
guishing some of them using natural language, we consoli-
dated them into six representative categories: keeping, turn
left, turn right, lane change, zigzag, and U-turn.

3.2. Models and Prompt Engineering

We adopt Qwen2.5-VL [4] and Cosmos-Reason1 [25]
as our primary VLMs for traffic scene understanding.
Qwen2.5-VL is a recently released model that achieves
state-of-the-art performance across multiple video under-
standing benchmarks. Unlike LLaVA-based models such as
Video-LLaVA [21], Qwen2.5-VL does not suffer from se-
vere token limitations, making it compatible with in-context
learning [6] and long-format reasoning.

We also experimented with several other popular VLMs,
including VideoLLaMA 2 [30], Video-LLaVA [21], and
InternLM-XComposer-2.5 [31]. However, these models
exhibited major limitations in instruction-following and

structured response generation. Despite carefully designed
prompts and demonstrations, they failed to produce clas-
sification results in the expected format. For example,
Video-LLaVA frequently generated repetitive or irrelevant
responses, and could not handle even simple Visual Ques-
tion Answering (VQA) [3] questions such as “Is there a
car in front?”. The responses were often inconsistent or
overlay generic, e.g., “The car is driving on the road and
is in the middle of the road,” with little variation or se-
mantic depth for traffic scenes, whereas non-traffic images
were described in more detail. Video-LLaMA-2 exhibited
similar behavior, which we attribute to overfitting on their
instruction-tuning datasets that lack sufficient coverage of
structured traffic scene data and classification tasks.

In contrast, Qwen2.5-VL demonstrates more reli-
able instruction-following and produces coherent, scene-
relevant descriptions in traffic scenarios. We therefore
choose it as our base model. Furthermore, Cosmos-
Reason1, built upon Qwen2.5-VL, is additionally trained
on datasets related to the physical world, such as robotics
and traffic-centric reasoning. We hypothesize that this addi-
tional grounding enhances its capability to model complex
agent interactions in real-world driving scenes.

To leverage these models effectively, we design task-
specific prompts that incorporate two key strategies: Chain-
of-Thought (CoT) [29] and In-Context Learning (ICL) [6].
For CoT prompting, we guide the model through a step-
by-step reasoning process, first describing the agents in the
scene and their behaviors before requesting a final classifi-
cation. For ICL, we provide one or more exemplars in the
prompt that demonstrate the expected input-output format,
enabling the model to generalize to new traffic scenes with-
out further tuning.

4. Experimental Results
We evaluate multiple vision-language foundation models on
diverse driving scenarios using different input viewpoints.
The experiments focus on two core comparisons: (1) Com-
paring ego-view with drone-view inputs to assess the impact
of spatial perspective on scene understanding. (2) Evalu-
ating different model performance with varying in-context
learning (ICL) examples, particularly under ego-view con-
ditions.

4.1. Viewpoint Comparison: Ego vs. Drone
We compare ego-centric and drone views using Qwen2.5-
VL-7B with vehicle-only (VO) and full-scene (Full) inputs,
as shown in Fig. 3. In all configurations, the drone-based
view consistently outperforms the ego-front view, particu-
larly under the 2-shot and 4-shot settings. This suggests
that the global spatial awareness provided by the bird’s-eye
perspective enables more effective reasoning about traffic
scenarios, even without direct agent-centric cues.
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Figure 3. Comparison of ego-centric and drone views using
Qwen2.5-VL-7B under VO and Full dataset settings, with vary-
ing ICL examples. The metrics are weighted F1 scores across six
behavior categories.

Figure 4. Comparison of different LVLMs on ego-front view in-
puts, evaluating performance across VO and Full dataset settings
with varying ICL examples. The metrics are weighted F1 scores
across six behavior categories.

Moreover, we observe that increasing the number of in-
context examples generally improves performance in both
ego and drone views. In most cases, the weighted F1
scores increase from 0-shot to 2-shot, suggesting that few-
shot prompting enables the model to better interpret com-
plex scenes through demonstration-based reasoning. How-
ever, the improvement from 2-shot to 4-shot is sometimes
marginal, indicating that a small number of relevant exam-
ples may already suffice, and that additional prompts be-
yond a certain point offer diminishing returns.

4.2. Model Comparison under Ego-Front View
We evaluate the performance of different models, Qwen2.5-
VL-7B, Qwen2.5-VL-32B, and Cosmos-Reason1-7B, us-
ing the ego-front view, as shown in Fig. 4. The analysis
focuses on how each model handles the complexities of
driving scenarios under both vehicle-only (VO) and full-

scene (Full) input settings, across different in-context learn-
ing configurations (ICL0, ICL2, ICL4).

Cosmos-Reason1-7B demonstrates consistently poor
performance across all configurations. A qualitative anal-
ysis reveals that the model frequently fails to follow the
intended classification instructions, instead reverting to be-
haviors aligned with its instruction-tuned training objec-
tives. For instance, even without prompts related to tempo-
ral alignment, Cosmos often generates outputs that attempt
to identify frame sequences rather than describing scenarios
or providing class predictions. This suggests a strong ten-
dency to overfit to its post-training dataset, which heavily
emphasizes video alignment and retrieval tasks.

In contrast, both Qwen2.5-VL variants exhibit more reli-
able alignment with the classification objective. Overall,
configurations with in-context learning (ICL2 and ICL4)
outperform the 0-shot CoT baseline, reaffirming that few-
shot prompting contributes positively to performance. The
larger Qwen2.5-VL-32B model consistently outperforms its
7B counterpart, indicating that increased model capacity en-
hances the ability to leverage contextual examples. How-
ever, for Qwen2.5-VL-32B, we observe that performance at
ICL4 is slightly lower than at ICL2 in both VO and Full sce-
narios. This suggests that a small number of well-designed
exemplars may already saturate the model’s ability to gen-
eralize, and that additional shots may introduce unnecessary
noise or distract from the core reasoning process.

5. Conclusion
In this paper, we presented benchmarks for evaluating
VLMs in complex traffic scenarios, focusing on multi-agent
interactions and behavioral classification. Our dataset, con-
structed from a diverse set of logical scenarios, provides a
rich foundation for assessing VLMs’ capabilities in under-
standing dynamic traffic environments. Our findings high-
light the potential of VLMs to enhance scenario-based val-
idation pipelines for autonomous driving systems.

6. Future Work
Future work will extend the dataset and evaluation frame-
work to better support V2X cooperative perception. This
includes constructing multi-viewpoint scenarios and inte-
grating additional sensing modalities such as LiDAR and
radar for cross-agent fusion and benchmarking.

The current evaluation focuses on behavior classifica-
tion. To assess scene understanding more comprehensively,
future metrics should evaluate fine-grained grounding, in-
cluding the ability to localize and distinguish agents by
spatial configuration, appearance, and context. Addition-
ally, fine-tuning models on the dataset and comparing them
with existing traffic scene VQA benchmarks will help as-
sess generalization and dataset utility.
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