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1. Introduction001

Autonomous racing represents one of the most challenging002
and advanced testbeds for autonomous driving technolo-003
gies. In this context, vehicles must perceive their environ-004
ment and make decisions at high speeds and under demand-005
ing conditions where every millisecond counts.006

A robust perception stack is critical, and relying on mul-007
tiple sensors - such as LiDAR, radar, and cameras - en-008
sures redundancy and accuracy. However, sensor failures009
can occur due to harsh conditions, hardware faults, or un-010
expected interferences. Having a reliable monocular 3D011
detection network acts as a safety net in these scenarios.012
Even if key sensors like LiDAR fail or degrade, a monoc-013
ular camera-based system can continue to provide essential014
3D environmental understanding while it receives the RGB015
input. This additional layer of perception enhances system016
resilience, maintains situational awareness, and ensures safe017
and continuous operation during autonomous racing tasks.018
However, 3D autonomous detection for Autonomous Rac-019
ing (AR) presents some differences with the 3D detection020
task for city environments:021

• range of distance (larger for AR);022
• number of classes (only one class in AR);023
• occlusions and number of objects in the scene (fewer oc-024

clusions and one object per scene in AR);025
• cross-camera generalisation abilities required (one model026

able to generalise for frontal left, frontal right and frontal027
central cameras in AR).028

In this extended abstract, our purpose is to propose029
a methodology for monocular 3D detection in the Au-030
tonomous Racing scenario. Specifically, the contributions031
involve the following:032

• A dataset for 3D detection in the Autonomous Racing033
scenario;034

• A methodology based on MonoDETR [16] with the ad-035
dition of virtual depth and dimensions to face a cross-036
camera scenario;037

• Quantitative and qualitative experiments.038

2. Dataset 039

Monocular 3D object detection has gained significant trac- 040
tion in recent years, driven by the need for scalable and 041
cost-effective 3D perception systems. Several benchmark 042
datasets have played a crucial role in advancing this field, 043
for example, KITTI [5], which remains one of the most 044
widely used. Other important datasets include nuscenes [3] 045
and waymo [14]. However, the ’Car’ category relevant to 046
autonomous racing differs significantly from that of typi- 047
cal city-driving vehicles. While datasets such as BETTY 048
[12] and Racecar [8] exist for autonomous racing, they lack 049
3D object annotations. Consequently, models trained on 050
datasets like KITTI fail to generalize effectively to the au- 051
tonomous racing (AR) domain. This highlights a critical 052
gap: the absence of AR-specific datasets for 3D object de- 053
tection using cameras, underscoring the need to develop a 054
dedicated dataset tailored to this unique setting. Our dataset 055
creation procedure starts from 7 videos acquired during dif- 056
ferent moments and in different locations. Labels are ob- 057
tained from a Lidar-based 3D detector named PointPillar 058
[10]. PointPillar is a deep neural network able to predict 3D 059
detection starting from LIDAR input. According to [13], 060
lidar-based 3D detector significantly outperform monocular 061
RGB ones. Therefore, it is reasonable to consider the Point- 062
Pillar predictions as ground truth. PointPillar was trained 063
on over 10,000 samples from a custom, manually labeled 064
dataset. The point cloud input is formed by merging data 065
from three LiDAR sensors. The resulting 3D bounding 066
boxes are reprojected onto the RGB camera views using in- 067
trinsic and extrinsic parameters obtained through an offline 068
calibration process. Each video serves as a dataset for 3D 069
detection in KITTI format, including images, labels, and 070
calibration matrices. The dataset in deep learning is a fun- 071
damental block of the entire procedure, since it should rep- 072
resent a balanced and correct distribution of the scenario. 073
For this reason, the first step has been dedicated to the data 074
analysis of the available videos and their labels, in order to 075
create a new significant and representative dataset. The final 076
dataset for training contains: 077

• 4490 samples: 078
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• inputs taken from three different frontal cameras;079
• a depth range between 3.8 and 135.0 meters, depth mean080

equal to 44.7808 m.081
The decision to exclude an entire video from the training082
set is made to prevent potential bias and overfitting. Using083
the same video for both training and testing could increase084
the risk of encountering nearly identical frames, such as a085
test image captured just milliseconds after one seen during086
training, which would unfairly boost performance and un-087
dermine the validity of the results. The test datasets are088
separated per camera: one acquired by the frontal central089
and the other by the frontal left. The range of depth is the090
same.091

3. Method092

Monocular 3D object detection methods can be broadly cat-093
egorised into prior-guided, camera-only, and depth-assisted094
approaches. Prior-guided methods [1], [17], incorporate095
shape, geometry, segmentation, or temporal priors to com-096
pensate for the ill-posed nature of 3D perception from a sin-097
gle image, often using auxiliary tasks or pretrained modules098
to enhance spatial understanding and detection robustness.099
Camera-only methods [16], [15], [11], directly regress 3D100
bounding boxes from RGB images using neural networks in101
an end-to-end fashion, drawing inspiration from 2D detec-102
tors to learn spatial dimensions and poses without relying103
on external cues. In contrast, depth-assisted methods [7]104
utilise pretrained monocular depth estimators [6] to convert105
images into depth maps or pseudo-LiDAR representations106
[4], enabling richer geometric reasoning but often facing107
performance gaps due to depth estimation errors. In this108
case, we excluded prior-guided methods as their reliance on109
predefined knowledge could impose constraints and limit110
adaptability.111
We focused our investigation on the most promising meth-112
ods from both camera-only and depth-assisted categories:113
respectively, MonoDETR [16] and DEVIANT[9]. While114
DEVIANT was ultimately excluded from our final approach115
due to insufficient performance results in racing scenarios116
(see Section 4), we identified and implemented a crucial117
adaptation technique derived from [2], called virtual depth,118
that significantly enhances the method’s generalization ca-119
pability across cameras with varying intrinsic parameters.120
This modification proved essential for our multi-camera121
racing setup, whereas it was unnecessary for the original122
MonoDETR implementation since the KITTI dataset on123
which it was trained utilised a single camera configura-124
tion with fixed parameters. The addition of virtual depth125
alone proved insufficient for our racing application, as Mon-126
oDETR’s architecture also requires accurate prediction of127
3D bounding box dimensions. Consequently, we extended128
the virtual depth concept to encompass dimension predic-129
tion, transforming both depth and size estimations into a130

unified ’virtual’ coordinate system that remains consistent 131
across multiple camera views with different intrinsic pa- 132
rameters. This comprehensive virtualisation approach en- 133
ables the model to maintain consistent 3D object represen- 134
tations regardless of the camera’s position or calibration pa- 135
rameters The effectiveness of this methodology is clearly 136
demonstrated in the experimental results presented in Ta- 137
ble 1, which shows improvements in detection accuracy and 138
cross-camera consistency compared to baseline implemen- 139
tations. 140

4. Experiments 141

We conducted several experiments to prove the choice of 142
MonoVDETR as the most promising method. Table 1 143
shows that MonoVDETR obtains better metrics than the 144
original MonoDETR and DEVIANT. The table, for a bet- 145
ter interpretation, shows not only 2D-AP, 3D-AP and BEV- 146
AP, typically used in 3D detection. It also includes met- 147
rics like the rotation error, the mean depth error and the 148
median depth error (both expressed in meters and percent- 149
age with respect to the ground truth distance). Specifically, 150
the errors are computed on correctly predicted 2D bound- 151
ing boxes only (with a IoU threshold of 0.70). These met- 152
rics help us interpret the final results. We observed that 153
MonoVDETR demonstrates greater robustness, as it pro- 154
duces fewer outlier predictions compared to baseline meth- 155
ods. We attribute this improvement to the use of virtual 156
depth and virtual dimensions, which help the model gen- 157
eralize more effectively across varying camera intrinsics. 158
In our evaluation, FC refers to performance on a test set 159
captured from a frontal central camera, while FR indicates 160
performance on data from a frontal right camera. These 161
settings allow us to assess the model’s ability to generalize 162
across different viewpoints and camera configurations. 163

Additionally, qualitative results in Figure 1 confirmed 164
our numerical observations. 165

5. Conclusions 166

In this work, we explored the adaptation of monocular 3D 167
object detection to the autonomous racing domain, which 168
presents significant differences from conventional urban 169
driving scenarios. We developed a model capable of gen- 170
eralising across different camera perspectives, demonstrat- 171
ing robustness in cross-camera settings. Additionally, we 172
introduced a well-distributed and representative dataset tai- 173
lored to monocular 3D detection in autonomous racing. Our 174
results highlight the feasibility and potential of applying 175
monocular 3D detection to autonomous racing, showing 176
that with domain-aware design and data preparation, mod- 177
els can achieve reliable spatial understanding even in this 178
high-speed context. Looking forward, we aim to further en- 179
hance our system by optimising the model for deployment 180

2



ICCV
#*****

ICCV
#*****

ICCV 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 1. Trained on Autonomous Racing Dataset (Threshold 0.5)

Method 2D-AP BEV 3D-AP Deg ROT D. Mean (m) D. Mean (%) D. Med (m) D. Med (%)

MonoDETR

FC
90.43

FR
90.54

FC
49.46

FR
53.85

FC
40.88

FR
43.40

FC
3.34
FR

3.06

FC
4.175

FR
1.32

FC
10.58

FR
2.42

FC
1.035

FR
0.86

FC
2.67
FR

1.97

MonoVDETR

FC
99.84

FR
90.75

FC
56.67

FR
55.78

FC
46.93

FR
44.31

FC
3.36
FR

2.79

FC
1.65
FR

1.31

FC
FR

3.10
2.34

FC
0.82
FR

0.78

FC
2.08
FR

1.71

DEVIANT
FC

75.67
FC

25.51
FC

11.68
FC

3.22
FC

1.32
FC
2.7

FC
0.76

FC
1.93

on efficient embedded hardware and reducing inference la-181
tency to meet the real-time requirements of onboard racing182
applications. These improvements will bring monocular 3D183
detection closer to practical use in competitive autonomous184
driving environments.185
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(a) MonoDETR (b) MonoVDETR

(c) MonoDETR (d) MonoVDETR

(e) MonoDETR (f) MonoVDETR

Figure 1. Examples of predictions (red) and ground truth (green). Both BEV visualization, 2D and 3D bounding box projection are visible.
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