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Abstract

Large vision-language models (VLMs) for autonomous001
driving (AD) are evolving beyond perception and cogni-002
tion tasks toward motion planning. However, we iden-003
tify two critical challenges in this direction: (1) VLMs004
tend to learn shortcuts by relying heavily on history input005
information, achieving seemingly strong planning results006
without genuinely understanding the visual inputs; and (2)007
the chain-of-thought (COT) reasoning processes are always008
misaligned with the motion planning outcomes, and how to009
effectively leverage the complex reasoning capability to en-010
hance planning remains largely underexplored. In this pa-011
per, we start from a small-scale domain-specific VLM and012
propose Drive-R1, designed to bridge the scenario reason-013
ing and motion planning for AD. Drive-R1 first undergoes014
the supervised finetuning on a elaborate dataset contain-015
ing both long and short COT data. Drive-R1 is encouraged016
to reason step-by-step from visual input to final planning017
decisions. Subsequently, Drive-R1 is trained within a re-018
inforcement learning framework that incentivizes the dis-019
covery of reasoning paths that are more informative for020
planning, guided by rewards based on predicted trajecto-021
ries and meta actions. Experimental evaluations on the022
nuScenes and DriveLM-nuScenes benchmarks demonstrate023
that Drive-R1 achieves superior performance compared to024
existing state-of-the-art VLMs. We believe that Drive-R1025
presents a promising direction for bridging reasoning and026
planning in AD, offering methodological insights for future027
research and applications.028

1. Introduction029

Autonomous driving (AD) systems aim to enable vehicles030
to perceive, understand, and interact with their environ-031
ments in a safe and intelligent manner. Among the core032
modules in AD pipelines, motion planning plays a cen-033
tral role in determining the future actions, balancing the034
safety, efficiency, and comfort in real-world driving sce-035

narios. Given observations of the environment and other 036
agents, trajectory prediction directly influence the subse- 037
quent low-level control. 038

Traditional motion planning methods often rely on man- 039
ually crafted rules [3, 8, 35] that operate under simpli- 040
fied assumptions of the environment and agent behaviors. 041
While these approaches offer interpretability and robustness 042
in structured scenarios, they typically struggle to handle 043
uncertainty, multi-agent interaction, and diverse traffic pat- 044
terns. Recently, deep learning-based methods [11, 12, 17] 045
have shown remarkable success in trajectory prediction 046
by leveraging large-scale driving datasets. These meth- 047
ods, comprised of encoder-decoder architectures or spatio- 048
temporal transformers, model the complex agent dynam- 049
ics and social interactions. The trajectory prediction lacks 050
the interpretability and still faces limitations in reasoning 051
under ambiguous contexts, adapting to open-world condi- 052
tions and long-tailed events. The emergence of large vision- 053
language models (VLMs) have introduced new opportu- 054
nities for enhancing AD systems. Recent methods [28– 055
30, 38, 40, 44] have demonstrated promising results in scene 056
perception, description, and decision-making with analysis 057
in open form visual question answers task. Further, the 058
methods [14, 18, 28, 42] extend the perception and cog- 059
nition tasks to motion planning task, with some output in- 060
terpretable decision processes. 061

However, several fundamental limitations remain insuffi- 062
ciently addressed in current VLM-based planning systems. 063
1) The utilization of visual-grounded response in motion 064
planning is limited or even entirely absent. Recent VLM- 065
based approaches [15, 40] achieve strong open-loop metrics 066
by predicting trajectories from image-text inputs, often with 067
short or no chain-of-thought (COT) reasoning. Early GPT- 068
driver [28] revealed that transforming all perceptual and 069
historical information into textual inputs and using a pure 070
large language model alone can already produce competi- 071
tive planning performance. To further probe this, we train a 072
general VLM to predict trajectories without COT supervi- 073
sion. At the test time, we ablate the visual input entirely and 074
find that the model performs comparably or even better than 075
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You are the brain of an autonomous vehicle. Plan a safe 3-
second driving trajectory. Avoid collisions with other objects.

axis is perpendicular, and Y-axis is parallel to the 
direction you're facing. You're at point (0,0).

-second route using 6 waypoints, one every 

1. Historical Trajectory: Your past 2-second route, given by 4 

States: Your current state including velocity, heading 
angular velocity, can bus data, heading speed, and steering signal.
3. Mission Goal: Goal location for the next 3 seconds.

Trajectory Planning: Develop a safe and feasible 3-second route 
using 6 new waypoints.

Trajectory (MOST IMPORTANT): [(x1,y1), (x2,y2), ... , (x6,y6)]

Question

Answer

Answer: [(-0.42,2.41), (-1.00,4.61), (-1.61,6.79), (-2.24,8.89), (-2.88,10.94), (-3.54,12.94)]

Answer: [(-0.42,2.38), (-1.00,4.77), (-1.61,7.15), (-2.23,9.52), (-2.85,11.88), (-3.47,14.24)]

(a) SFT Phase (b) RFT Phase

No - Images
GT: [(-0.32,2.37), (-0.90,4.85), (-1.69,7.46), (-2.71,10.15), (-3.86,12.92), (-5.15,15.69)]

Question: Frame 1: <image> Frame 2: <image> Frame 3: <image> Frame 4: <image> Frame 5: <image> Frame 6: <image>. These six 
images are the front view, front left view, front right view, back view, back left view and back right view of the ego vehicle. The 
inputs are : 1. Historical Trajectory (last 2 seconds): [(-1.41,-8.98), (-0.96,-6.75), (-0.51,-4.52), (-0.05,-2.29)]. 2.Ego-States: - 
Velocity (vx,vy): (0.03,2.28) - Heading Angular Velocity (v_yaw): (-0.01) - Acceleration (ax,ay): (-0.40,0.06) - Can Bus: (0.32,1.38) - 
Heading Speed: (2.35) - Steering: (2.22). 3. Mission Goal: LEFT. Develop a safe and feasible 3-second route using 6 new waypoints.

Figure 1. Inference results with and without visual inputs from the model which is trained to predict trajectory without chain of thoughts.

with full multi-model inputs. The observation indicates that076
VLMs for motion planning under-utilize the visual modality077
and heavily rely on textual priors, especially historical mo-078
tion cues, raising concerns about their visual grounding and079
generalization. 2) The COT reasoning traces are always080
misaligned with the motion planning outcomes. Lever-081
aging the reasoning capability to enhance planning per-082
formance remains largely underexplored. Recent methods083
[14, 40] engages in sequential question-answering to arrive084
at the final trajectory prediction. While such methods intro-085
duce interpretable intermediate steps, the reasoning remains086
loosely coupled with planning. We further observe that even087
when a domain-specific (DS) driving model is trained on088
motion planning datasets with CoT reasoning, it often falls089
into a reasoning trap. First, the reasoning patterns learned090
from CoT data especially designed for complex scenarios091
may introduce unnecessary analysis in simple cases, leading092
to overthinking and ultimately injecting noise into the plan-093
ning output. Second, even manually annotated CoT can-094
not guarantee precise alignment with the ground-truth tra-095
jectories, as natural language reasoning tends to be coarse-096
grained and ambiguous compared to the fine-grained nu-097
merical representation required for planning [18].098

To address the aforementioned challenges and bridge the099
gap between scenario reasoning and trajectory-level mo-100
tion planning in AD, we introduce Drive-R1 tailored for101
vision-language reasoning and trajectory prediction. We be-102
gin with a general VLM, InternVL2 [5], and adapt it to the103
AD domain by post-training on a large-scale, self-collected104
dataset comprising 3 million samples. This DS model is105
endowed with strong perception and scene understanding106
capabilities, forming a foundation for downstream planning107
tasks.108

To enable reasoning-aware planning, we construct a109

structured annotation pipeline that generates CoT data ac- 110
cording to key domains in real-world AD [22], including 111
traffic knowledge understanding, general element recogni- 112
tion, traffic graph generation, target attribute comprehen- 113
sion, and ego decision-making and planning. The resulting 114
CoT dataset contains approximately 4,000 samples, cate- 115
gorized into short and long CoT based on the complexity 116
of the driving scenarios: short CoT correspond to relatively 117
simple situations that require minimal deliberation, whereas 118
long CoT are designed for complex, multi-agent, or rule- 119
intensive scenes demanding richer step-by-step reasoning. 120
During the supervised learning stage, Drive-R1 is trained 121
on the elaborate dataset to learn to reason from visual ob- 122
servations toward final planning outputs in an interpretable 123
and structured manner. This stage is crucial for encouraging 124
grounded reasoning and mitigating the tendency to overfit to 125
historical trajectory patterns or exploit dataset shortcuts. 126

To further align the textual reasoning and numerical tra- 127
jectory planning, we introduce the reinforcement learning 128
(RL) inspired by the success of recent RL approaches [9, 129
13]. Specifically, Drive-R1 employs the Group Relative 130
Policy Optimization (GRPO), which performa optimization 131
over a set of candidate solutions. The relative optimiza- 132
tion mechanism is particularly suitable for motion plan- 133
ning, where multiple plausible trajectories may exist un- 134
der the same driving scenario. By leveraging comparisons 135
across diverse candidates, GRPO encourages the model to 136
discover reasoning paths that generalize well across varia- 137
tions, rather than overfitting to a single deterministic trajec- 138
tory, thereby enhancing both planning robustness and gen- 139
eralization. The reward design in GRPO integrates four 140
components: trajectory accuracy, meta-action correctness, 141
repetition penalty, and output format compliance. Among 142
them, the trajectory reward captures outcome-level planning 143

2



ICCV
#2

ICCV
#2

ICCV 2025 Submission #2. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

quality, while the meta-action reward reflects the reasoning144
process quality. These two reward signals are complemen-145
tary, further promoting effective alignment between reason-146
ing and planning within the Drive-R1 framework.147

We conduct extensive experiments on both the148
nuScenes [1] dataset and the DriveLM-nuScenes [38]149
dataset. Our proposed Drive-R1 achieves state-of-the-art150
performance on the trajectory prediction task, demonstrat-151
ing its effectiveness in visual-grounded motion planning.152
Furthermore, we perform comprehensive ablation studies153
on DriveLM-nuScenes, investigating the impact of various154
components, including the GRPO on model in different155
phases, the number of rollouts, and the influence of differ-156
ent reward functions. Our contribution can be summarized157
as follows:158

• We identify two key challenges in applying VLMs to mo-159
tion planning: (i) the over-reliance on historical textual160
inputs leads to shortcut learning, weakening the visual161
grounding; and (ii) the misalignment between reasoning162
chains and planning outputs hinders effective integration163
of interpretability and decision quality.164

• We propose Drive-R1, a DS VLM tailored for AD, which165
connects visual-grounded reasoning to trajectory plan-166
ning. Our approach incorporates supervised learning167
on a carefully constructed dataset containing both long168
and short CoT annotations, followed by RL with GRPO169
to further align reasoning quality with planning perfor-170
mance.171

• We conduct extensive experiments on nuScenes and172
DriveLM-nuScenes, where Drive-R1 achieves state-of-173
the-art results on trajectory prediction.174

While our work represents a straightforward exploration175
of integrating VLM into the motion planning pipeline, the176
insights gained from Drive-R1 may offer valuable guidance177
for future efforts toward the practical deployment of VLMs178
in AD systems.179

2. Related Work180

2.1. Vision-language Models for Autonomous Driv-181
ing182

The integration of VLMs into AD has recently gained sig-183
nificant attention, aiming to unify perception, reasoning,184
and planning within a single framework. Existing works185
in this field can be broadly divided into two categories:186
scene reasoning-oriented models, and planning and control-187
oriented models. The first focuses on scene understanding188
and reasoning [7, 26, 29, 30, 38], where VLMs are used to189
analyze visual environments through natural language, of-190
ten leveraging question-answering or chain-of-thought rea-191
soning to enhance transparency and trustworthiness. Plan-192
ning and control-oriented models [4, 31, 37, 40, 42, 44],193
on the other hand, aim to directly generate actionable out-194

puts such as trajectories or control signals from visual and 195
linguistic inputs. These systems often leverage large-scale 196
data and unified modeling to perform planning implicitly 197
within the language model, with or without intermediate 198
reasoning steps. In this paper, we focus on trajectory pre- 199
diction and find that models can achieve competitive plan- 200
ning performance even with limited or no visual input, sug- 201
gesting a potential over-reliance on linguistic or historical 202
features and insufficient grounding in visual observations. 203

2.2. Reinforcement Learning 204

RL has played a pivotal role in the recent evolution of large 205
language models, particularly in aligning model outputs 206
with human preferences or task-specific objectives. Early 207
developments, such as proximal policy optimization [36] 208
and direct policy optimization [34] have been widely 209
adopted in general-purpose LLMs to improve response 210
helpfulness and safety from human feedback, demonstrat- 211
ing that large models could benefit from post-training opti- 212
mization beyond supervised learning, enabling them to rea- 213
son and act in more aligned and consistent ways. Recent 214
Group Relative Policy Optimization (GRPO) [9] proposes a 215
group-wise relative optimization strategy, which compares 216
the relative merits of multiple output candidates instead of 217
optimizing based solely on absolute reward values. GRPO 218
has shown strong potential in complex reasoning tasks by 219
encouraging models to explore interpretable thought pro- 220
cesses rather than shortcutting to answers. Building on this, 221
RL has been extended to VLMs to enhance their ability 222
to perform multi-step reasoning grounded in visual inputs 223
[13, 18, 20]. AlhpaDrive [18] introduced RL to high-level 224
planning and ReCogDrive [23] claimed the gap between the 225
discrete language space and the continuous action space. 226
Aligning textual reasoning with numerical outputs like tra- 227
jectories in AD presents unique challenges, requiring de- 228
signs that balance process-level and result-level precision. 229
In this paper, our work still pursues the alignment between 230
reasoning and planning in the discrete space. 231

3. Drive-R1 232

Drive-R1 aims to bridge scenario-level reasoning and tra- 233
jectory planning for AD through a combination of SFT 234
and RL. We begin by introducing the construction of the 235
Reasoning-Planning chain of thought (RP-CoT) dataset, 236
which encodes intermediate reasoning steps aligned with 237
planning outcomes. Then we detail the supervised training 238
phase, highlighting the initial capabilities the model must 239
acquire to address the challenges discussed above. Finally, 240
we describe the RL procedure, which leverages carefully 241
designed reward functions to further align textual reasoning 242
with numerical trajectory prediction, enhancing both inter- 243
pretability and planning performance. 244
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<Think> Five Domains
<Answer>Trajectory
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Check by Human
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(a) Annotation Pipeline

Scene

Scene 
Description

QAs Truth Events

Motion Planning
Ground truth

Reasoning 
Planning COT

<Think> Five Domains
<Answer>Trajectory

Refine by VLM

Check by Human

From Public Sources

(b) Reasoning-Planning Chain of Thoughts

LLM

LLM

VLM

Figure 2. The RP-COT data annotation pipeline.

3.1. RP-COT Data Annotation245

Following the five key domains identified in [22] as funda-246
mental to motion planning, i.e., traffic knowledge under-247
standing, general element recognition, traffic graph gen-248
eration, target attribute comprehension, and ego decision-249
making and planning, we construct the RP-CoT dataset.250
RP-CoT is designed to bridge high-level scenario reason-251
ing with low-level trajectory outputs in AD. The scenes are252
selected from nuScenes [1]. Each annotation sample in RP-253
CoT includes step-by-step textual reasoning that reflects a254
structured understanding of the driving scene, ultimately255
grounded in a precise trajectory decision.256

As shown in Fig.2, the annotation pipeline is semi-257
automatic. We begin by collecting driving scenes from pub-258
licly available sources [16, 33, 38], which are annotated259
with scene descriptions and question-answer (QA) pairs.260
According to the hundreds of QAs of the scene, ChatGPT261
first generates the truth events, which are structured rep-262
resentations of the underlying reasoning rationale. Next,263
based on the ground-truth events and the motion planning264
information (history trajectory, ego status, meta action),265
ChatGPT generates RP-COT data through the five domains.266
Each sample includes the <think></think> section that ex-267
plains reasoning steps and the <trajectory></trajectory>268
section that specifies the future trajectory (6 points with 3269
seconds). To ensure the generated RP-CoTs are grounded270
in visual reality, the VLM, GPT-4o, is employed to refine271
these outputs by aligning them with scene content. Finally,272
all annotations are checked by human annotators to guaran-273
tee consistency, correctness, and planning validity.274

Our annotation pipeline systematically decomposes the275
visual-linguistic information into reasoning stages aligned276
with the aforementioned domains. This structured format277
enables the model to learn interpretable reasoning paths that278
progressively lead to planning actions, laying a strong foun-279
dation for subsequent learning stages.280

3.2. Supervised Fine-tuning Phase 281

As discussed above, the utilization of visual-grounded re- 282
sponse in motion planning is limited or even absent. As 283
shown in Table 1, directly training a general-purpose VLM 284
(Internvl2-4B) to output trajectories without CoT supervi- 285
sion can yield surprisingly competitive performance. How- 286
ever, we observe a counterintuitive outcome: the model 287
performs better when visual inputs are ignored, indicat- 288
ing a strong reliance on historical textual context over vi- 289
sual perception. We attribute this phenomenon to two key 290
factors: (1) the model lacks sufficient familiarity with DS 291
tasks in AD and (2) the model are more sensitive to histor- 292
ical motion cues than to scene-level visual information. To 293
address this, we first perform full-parameter finetuning of 294
an InternVL2-4B model on a large-scale, DS dataset com- 295
prising 3 million AD QAs, which are collected from pub- 296
lic sources [2, 10, 19, 21, 25–29, 32, 38, 41, 44]. The 297
DS model from the first SFT stage significantly mitigates 298
the overreliance on historical information and enhances 299
its general understanding of AD scenarios. Nevertheless, 300
the gap between visual-informed and vision-agnostic rea- 301
soning remains narrow. Further, we incorporate the pre- 302
viously constructed RP-CoT dataset into the second SFT 303
stage. Through supervised CoT supervision, the model is 304
encouraged to form visual-grounded reasoning paths across 305
key domains, solving the dependency on textual history in- 306
formation and thereby promoting more robust, perception- 307
aware planning behavior. 308

On the other hand, the COT reasoning traces are always 309
misaligned with the motion planning outcomes. The ex- 310
perimental results in Table 1 show that applying long CoT 311
supervision during the SFT stage lead to a decline in perfor- 312
mance compared to directly supervising the final trajectory 313
output. Interestingly, similar observations occur in other 314
domains. Recent researches [39, 43] report that for tasks 315
involving spatial reasoning or numerical sensitivity, models 316
trained with CoT supervision often underperform compared 317
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Table 1. The preliminary experimental results validated on 799 samples from DriveLM-nuScenes [27]. BA and DS are the base and
domain-specific models. WI denotes inference without image inputs.

Models RP-COT Trainning Phase L2(m)↓ Collision↓
Long Short SFT RFT 1s 2s 3s Avg 1s 2s 3s Avg

BA × ✓ ✓ × 0.25 0.55 0.97 0.59 0.00 0.09 0.56 0.22
BA-WI × ✓ ✓ × 0.25 0.53 0.90 0.56 0.00 0.03 0.48 0.18

DS × ✓ ✓ × 0.18 0.42 0.76 0.45 0.00 0.03 0.46 0.16
DS ✓ × ✓ × 0.24 0.53 0.91 0.56 0.00 0.19 0.61 0.27
DS ✓ ✓ ✓ × 0.19 0.39 0.67 0.41 0.00 0.03 0.29 0.11
BA - - × ✓ 0.37 0.75 1.22 0.78 0.00 0.16 0.84 0.33
DS - - × ✓ 0.26 0.55 0.93 0.58 0.00 0.19 0.61 0.27
DS ✓ ✓ ✓ ✓ 0.17 0.35 0.60 0.37 0.00 0.00 0.30 0.10

RP-COT 
Cold Start

Policy 
Model

Multinomial 
Sampling

Reasoning CoT 1 Trajectory 1

Reasoning CoT 2 Trajectory 2

Reasoning CoT N Trajectory N

Meta 
Reward

Format 
Reward

Reward Model

Group 
Advantages

Updates

Annotated 
CoT Data

Domain-Specific 
Models

Trajectory 
Reward

Penalty
Reward

Trajectory 
Data

模型输入：环视图 + Prompt（包含自车当前状态, 导航信息和历史轨迹） 
Promt 案例： -思考过程：遵循自动驾驶COT思维机制，共有5个关键领域：1:交通知识理解，2:通用元素识别，3:交通图谱生成，4: 
目标属性理解，和5:自车决策和规划。 -轨迹规划：使用6个点制定安全可行的3秒路线，格式为[(x1,y1),(x2,y2),...,(x6,y6)]. （注意，
输出的思考过程和轨迹结果用 , 标签分隔) 

Reference
Model

KL

(a) SFT Phase (b) RFT Phase

Figure 3. The overview of the proposed Drive-R1, which comprises the supervised fine-tuning (SFT) and reinforcement fine-tuning (RFT)
phases.

to those trained with direct answer supervision. We hy-318
pothesize that the observed performance degradation may319
stem from two primary factors: (1) the limited represen-320
tation capacity of small-scale models, which restricts their321
ability to accurately encode and utilize complex reasoning322
paths [24] and (2) the differing tolerance to errors of the323
models between textual and numerical outputs. Specifically,324
reasoning texts generated during CoT supervision may con-325
tain semantic inconsistencies or hallucinations, either due to326
imperfect annotation quality or intrinsic limitations of the327
model. While such errors may have negligible impact on328
the interpretability or plausibility of the textual reasoning329
itself, they can propagate to the numerical prediction stage,330
e.g., trajectory prediction, where small deviations are am-331
plified into significant planning errors.332

To mitigate the negative impact of indiscriminate CoT333
supervision, we introduce a fast-and-slow thinking strategy334
in the second SFT stage. The core idea is to adapt the com-335
plexity of reasoning supervision to the difficulty of each336
driving scenario. Specifically, we categorize CoT supervi-337
sion into short CoT and long CoT, depending on the rea-338

soning demand: short CoT corresponds to relatively simple 339
scenarios requiring minimal deliberation, while long CoT is 340
designed for complex, multi-agent, or rule-intensive scenes 341
that demand richer step-by-step reasoning. We begin by 342
training a model to directly generate trajectory outputs with- 343
out CoT supervision. This specific model is then used to 344
assess the reasoning complexity of each scene, serving as a 345
proxy for scenario difficulty. Scenes with low planning met- 346
rics are assigned short CoT supervision, while those with 347
high planning metrics are paired with long CoT annotations. 348
As shown in Table 1, models fine-tuned with this adaptive 349
fast-and-slow thinking strategy achieve the best overall per- 350
formance, validating its effectiveness in balancing long and 351
short COT. 352

3.3. Reinforcement Learning Phase 353

DeepSeek-R1 [9] demonstrates that RL frameworks like 354
GRPO can effectively elicit long CoT reasoning abilities 355
of large language models. However, subsequent stud- 356
ies [6, 46] have shown that the reasoning paths produced 357
by RL-finetuned models already exist with high probabil- 358
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ity in the output distribution of base model, i.e., problems359
solvable by the RL model can also be addressed by the base360
model through sufficient sampling. Building upon these in-361
sights, we adopt GRPO not as a means to unlock fundamen-362
tally new capabilities, but rather as a post-training align-363
ment mechanism to improve the efficiency and consistency364
for further aligning the reasoning and planning.365

3.3.1. Algorithm366

Specifically, for each question q, GRPO [9] samples a group367
of candidate outputs {o1, o2, · · · , oG} from the old policy368
πθold , and subsequently updates the current policy πθ by369
maximizing the following objective:370

JGRPO(θ) = Eq,{oi}G
i=1∼πθold (O|q)[

1

G

G∑
i=1

wiAi − βDKL(πθ∥πref)

]
,

(1)371

wi = min

(
πθ(oi|q)
πθold(oi|q)

, clip
(

πθ(oi|q)
πθold(oi|q)

, 1− ϵ, 1 + ϵ

))
,

(2)372

Ai =
ri − mean({r1, r2, . . . , rG})

std({r1, r2, . . . , rG})
, (3)373

where the KL loss is calculated by DKL(πθ∥πref) =374
πref(oi|q)
πθ(oi|q) −log πref(oi|q)

πθ(oi|q) −1, {r1, r2, · · · , rG} are the rewards375
of the candidate outputs.376

3.3.2. Rewards377

To better align the intermediate reasoning steps with final378
motion planning outcomes, we design a composite reward379
function that balances both process-level and outcome-level380
results. The total rewards comprise the following compo-381
nents:382
Trajectory Reward measures the accuracy of the predicted383
trajectory by computing the L2 distance between the pre-384
dicted trajectory τ̂ and the ground truth τ . The raw dis-385
tance is then mapped using a sigmoid-based transformation:386

Rtraj =
2e−d

1+e−d , d = ∥τ̂ − τ∥2.387
Meta-Action Reward assesses the high-level planning de-388
cisions in the reasoning section, including the short-term389
lateral and longitudinal decisions. Each contributing 0.5 to390
the total reward score.391
Repetition Penalty penalizes the generation of redundant392
or repetitive reasoning steps within the CoT to encourage393
concise and efficient planning rationale [45].394
Format Reward ensures structural correctness of the out-395
put format.396

Importantly, our analysis shows that the result-oriented397
trajectory reward and the process -oriented meta-action re-398
ward are positively correlated.399

3.3.3. Training 400

Through extensive experiments, we observe that effective 401
RL in the context of motion planning is highly dependent 402
on the model’s prior alignment with the AD domain. When 403
applied to models without sufficient domain adaptation, re- 404
inforcement signals often result in unstable updates or lim- 405
ited policy improvement, suggesting that the capacity to in- 406
terpret structured driving scenarios is a prerequisite for suc- 407
cessful policy refinement. Consequently, we perform RL on 408
a model that has been supervised via two-stage fine-tuning, 409
as introduced in the SFT phase. Building on such warm-up, 410
RL further amplifies the synergy between visual-grounded 411
reasoning and motion planning, leading to the most signifi- 412
cant performance gains observed in our experiments. 413

4. Experiments 414

4.1. Datasets and Baselines 415

In the first SFT phase, the domain specific data are collected 416
from a diverse set of AD datasets, including [2, 10, 19, 21, 417
25–29, 32, 38, 41, 44] with 3 million samples. The QAs 418
are built following the five key domains, and include the 419
single-view, multi-view, and sequential image inputs. In 420
the second SFT phase, RP-COT dataset are construct from 421
the annotations in [16, 33, 38] with the number of sam- 422
ples 4,072. When compared on the 6019 validation samples 423
on nuScenes [1], the numbers of long and short RP-COT 424
are 24058 and 4072. When compared on the 799 validation 425
samples on DriveLM-nuScenes [38], the numbers of long 426
and short RP-COT are 2036 and 2036. In the RL phase, the 427
samples are selected from those in 4072 RP-COT datasets. 428

We benchmark Drive-R1 against both end-to-end and 429
vision-language planning baselines. The former includes 430
ST-P3 [11],UniAD [12] and their modified versions aug- 431
mented with ego-status inputs [17]. The latter set of base- 432
lines includes DriveVLM [40], RDA-Driver [14], Om- 433
niDrive [42], and EMMA [15]. Notably, prior approaches 434
typically output direct trajectory predictions either with- 435
out reasoning or with short CoT supervision. In contrast, 436
Drive-R1 produces both reasoning chains and trajectory 437
outcomes in a unified manner, enabling interpretable and 438
context-sensitive planning. 439

4.2. Implementation and Metrics 440

The SFT training is conducted based on the official code- 441
base of InternVL2 [5]. The first-stage SFT is trained on 32 442
V100 nodes with a batch size of 256, while the second-stage 443
SFT is trained on 16 V100 nodes with a batch size of 128. 444
The RL phase is implemented using the ms-swift frame- 445
work [47] and trained on 2 V100 nodes with a batchsize of 446
16 and a rollout of 6. The context length is set to 4096. 447
For evaluation, we adopt the L2 distance and collision rate 448
metrics, following ST-P3 [11]. 449
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Table 2. Overall comparison with baselines on the nuScenes [1] validation.

Models L2(m)↓ Collision↓
1s 2s 3s Avg 1s 2s 3s Avg

nuScenes
ST-P3 [11] 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71
UniAD [12] 0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31

UniAD-E [12] 0.20 0.42 0.75 0.46 0.02 0.25 0.84 0.37
VAD-E [17] 0.17 0.34 0.60 0.37 0.07 0.10 0.24 0.14

DriveVLM [40] 0.18 0.34 0.68 0.40 0.10 0.22 0.45 0.27
RDA-Driver [14] 0.17 0.37 0.69 0.40 0.01 0.05 0.26 0.10
OmniDrive [42] 0.14 0.29 0.55 0.33 0.00 0.13 0.78 0.30

EMMA [15] 0.14 0.29 0.54 0.32 - - - -
Drive-R1 (Ours) 0.14 0.28 0.50 0.31 0.02 0.06 0.19 0.09

nuScenes-DriveLM
ST-P3 [11] 1.28 2.03 2.81 2.04 0.14 0.72 1.28 0.71

GPT-Driver [28] 0.22 0.43 0.73 0.46 0.00 0.13 0.46 0.19
RDA-Driver [14] 0.18 0.38 0.68 0.41 0.00 0.06 0.36 0.14
Drive-R1 (Ours) 0.17 35 0.60 0.37 0.00 0.00 0.30 0.10

GT: [(0.06,2.08), (0.26,4.36), (0.58,6.36), (0.98,8.16), (1.64,10.49), (2.39,12.79)]] 

DSModel + GRPO :
<think>…approaching an intersection with a traffic light. ….no traffic signs or road barriers.  The key objects 
include a white sedan, a black sedan, and a white truck. The white sedan is moving straight ahead, while the black 
sedan is stationary and is in an adjacent lane. The trajectory planning involves a main straight path with a right 
turn at the intersection. The ego vehicle should decelerate slightly to ensure a safe turn. The historical 
trajectory shows a consistent path, supporting the decision to maintain speed and execute a right turn. The ego-
states indicate a slight steering adjustment to align with the turn. </think>
<trajectory>[(0.10,2.60), (0.36,5.22), (0.70,7.77), (1.06,10.12), (1.45,12.29), (1.82,14.34)]</trajectory>

Drive-R1:
 <think> The ego vehicle … making a right turn at an intersection, and continuing forward. There are no traffic 
signals or signs directly affecting the ego vehicle's immediate path. The key objects include a black sedan, a 
white sedan, and a white truck, and  pedestrians. The relationship between the vehicles and the lanes is 
straightforward. The white sedan is in the ego lane. The behavior of these objects is consistent, with no 
indications of sudden stops or lane changes. The trajectory is planned to ensure a smooth transition into the 
right lane while maintaining a safe distance from the moving vehicles. The ego vehicle's lateral meta action is to 
change lanes to the right, and the longitudinal meta action is to maintain speed.</think>
<trajectory>[(0.15,2.54), (0.47,4.99), (0.98,7.44), (1.04,9.74), (1.82,12.00), (2.30,13.20)]</trajectory>

System Prompt: 
1. Role Definition 2. Inputs Definition  3. Task Definition: Thought 
Process, Trajectory Prediction
Prompt: 
The Inputs are:  1. Frames. 2. Historical Trajectory (last 2 seconds) 
3.Ego-States 4. Mission Goal.

Figure 4. An inference results from different models.

4.3. Results450

Table 2 presents a comprehensive comparison between451
Drive-R1 and existing representative baselines. Drive-452
R1 achieves the lowest average L2 error of 0.31,453

marginally outperforming EMMA (0.32) [15] and Om- 454
niDrive (0.33) [42], while also exhibiting the lowest av- 455
erage collision rate of 0.09. In contrast, several end-to- 456
end methods demonstrate competitive L2 metrics, yet suf- 457
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Table 3. Ablation Studies of the reward designs and the number of rollouts in GRPO. T., F., R., M. represent the trajectory reward, format
reward, repetition penalty, and meta-action reward.

Rewards Rollouts L2(m)↓ Collision↓
T.&F. R. M. Nums 1s 2s 3s Avg 1s 2s 3s Avg
✓ × × 6 0.17 0.35 0.60 0.37 0.06 0.06 0.42 0.18
✓ ✓ × 6 0.17 0.34 0.59 0.37 0.06 0.06 0.30 0.14
✓ ✓ ✓ 6 0.17 0.35 0.60 0.37 0.00 0.00 0.30 0.10
✓ ✓ ✓ 12 0.17 0.35 0.60 0.37 0.00 0.03 0.25 0.11
✓ ✓ ✓ 24 0.17 0.35 0.60 0.37 0.00 0.03 0.21 0.08

fer from relatively higher collision rates. This suggests458
that while these models may fit the trajectory well numeri-459
cally, they may lack robustness in safety-critical aspects of460
planning. Among VLM-based baselines, Drive-R1 consis-461
tently achieves better planning quality and safety. Notably,462
compared with RDA-Driver [14] and OmniDrive [42], our463
model demonstrates both improved trajectory precision464
and reduced collision risks, validating the effectiveness of465
reasoning-aligned trajectory generation.466

4.4. Ablation Studies467

We conduct extensive ablation experiments on the468
DriveLM-nuScenes [38] to investigate the effects of RP-469
COT input types and RL configurations.470
Effect of COT Length in SFT Stage. As shown in Table471
1, we evaluate the influence of long and short RP-COTs in472
the second SFT stage. Models trained with only short RP-473
COTs or long RP-COTs underperform those trained with474
both long and short RP-COTs, suggesting that applying a475
uniform CoT strategy across diverse scenarios is subopti-476
mal. Instead, combining both short and long CoTs better477
equips the model to handle a wider variety of AD contexts,478
leveraging both concise and elaborate reasoning chains.479
Effectiveness of RL on Different Model Bases. In Table480
1, we further assess how RL impacts different model vari-481
ants. The DS model, trained on the first SFT stage, benefits482
from RL than the base model. Further, when incorporat-483
ing long and short RP-COT pattern, the model significantly484
benefit from the RL phase, reducing both trajectory devia-485
tion and collision rates. This underscores the necessity of486
prior domain alignment before performing RL fine-tuning.487
Impact of Reward Design and Rollout Numbers. In Ta-488
ble 3, we evaluate how various reward components and489
rollout counts affect model performance. The inclusion of490
meta-action rewards and repetition penalties leads to con-491
sistent improvements in collision rates (e.g., 0.14 to 0.10),492
highlighting their effectiveness in guiding safer planning493
behavior. However, for models with relatively small ca-494
pacity, simply increasing the number of rollouts does not495
always yield stable or consistent performance gains. For496
instance, although the collision rate decreases from 0.10 to497
0.11 and to 0.08 when the number of rollouts increases from498

6 to 12 and to 24, we observe that the training becomes un- 499
stable beyond a certain number of steps under the 24-rollout 500
setting. It is worth noting that the reported result at 24- 501
rollout is extracted before the onset of training collapse. 502

5. Conclusion 503

In this work, we present Drive-R1, which bridges the 504
structured chain-of-thought reasoning and the trajectory- 505
level motion planning. To address the insufficient visual 506
grounding and the misalignment between reasoning traces 507
and planning outputs observed in existing VLM-based 508
approaches, we construct a domain-specific VLM and 509
augment it with a systematically annotated CoT dataset 510
spanning five essential reasoning domains. Furthermore, 511
we incorporate a RL phase based on GRPO to optimize 512
planning quality for aligning the reasoning process with 513
trajectory outcomes. Comprehensive experiments con- 514
ducted on nuScenes and DriveLM-nuScenes benchmarks 515
validate the effectiveness of our proposed method. Drive- 516
R1 achieves state-of-the-art performance on trajectory 517
prediction tasks while offering interpretable and structured 518
reasoning capabilities. Drive-R1 represents an early explo- 519
ration toward bridging high-level cognitive reasoning and 520
low-level trajectory planning in AD. In addition, we con- 521
duct extensive experiments on large-scale in-house datasets 522
using Ascend 910 hardware platforms, which further 523
verify the generalizability and robustness of the Drive-R1 524
framework. We believe that the insights gained from 525
Drive-R1 may offer valuable guidance for future efforts 526
toward the practical deployment of VLMs in AD systems. 527
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