
ICCV
#*****

ICCV
#*****

ICCV 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Contextual-Personalized Adaptive Cruise Control via Fine-Tuned Large
Language Models

Anonymous ICCV submission

Paper ID *****

Abstract

Adaptive cruise control (ACC) is a widely adopted tech-001
nique within advanced driver assistance systems (ADAS)002
to alleviate driver workload and fatigue in long-distance003
driving or stop-and-go traffic scenarios. However, conven-004
tional ACC systems typically fail to account for drivers’005
preferences or changing environmental conditions, limit-006
ing their adaptability in adjusting headway. To bridge this007
gap, this study introduces a novel contextual-personalized008
ACC (CP-ACC) framework that leverages the contextual009
reasoning and adaptive customization potential of large010
language models (LLMs). Specifically, LLMs including011
LLaMA-3-8B and Mistral-7B are fine-tuned with a syntheti-012
cally generated dataset encompassing diverse drivers’ pref-013
erences (e.g., energy efficiency, comfort) and real-time con-014
textual information (e.g., weather, traffic conditions). CP-015
ACC demonstrates the ability to identify, quantify, and bal-016
ance competing objectives (e.g., safety, mobility) compared017
to linear feedback ACC and the intelligent driver model018
(IDM). Supervised fine-tuning (SFT) further enhances the019
LLMs’ ability to recognize driving objectives and generate020
safe, context-aware longitudinal control commands, outper-021
forming zero-shot and few-shot prompting. Overall, the022
proposed CP-ACC framework presents a promising direc-023
tion for delivering smart, adaptive, and personalized driv-024
ing assistance tailored to varying drivers’ preferences and025
dynamic traffic environments.026

1. Introduction027

The rapid advancement of autonomous driving technologies028
has driven an increased reliance on advanced driver assis-029
tance systems (ADAS), with adaptive cruise control (ACC)030
playing a key role in enabling automatic longitudinal con-031
trol to maintain safe inter-vehicle headways [35, 36]. Note032
that real-world driving is characterized by diverse individ-033
ual preferences, such as prioritizing “safety”, “comfort”,034
“mobility”, or “energy efficiency”, necessitating personal-035

ized and context-sensitive system responses [39]. However, 036
existing ACC systems exhibit limitations in integrating two 037
critical dimensions essential for informed decision-making: 038
(i) the diversity of drivers’ preferences, and (ii) the dynam- 039
ically evolving surrounding environment. This motivates a 040
research question: How can ACC systems be designed to in- 041
terpret and quantify these dimensions, thus providing smart 042
and customized driving assistance? 043

Large language models (LLMs) have emerged as a trans- 044
formative tool to deliver personalized recommendations, 045
driven by their sophisticated semantic reasoning, contextual 046
synthesis, and knowledge transfer abilities [33]. Their supe- 047
rior performance on tasks such as summarization, inference, 048
and question answering significantly streamlines the gener- 049
ation of high-quality advice or content [38]. To date, LLM- 050
related techniques have been applied across various intelli- 051
gent transportation systems (ITS) domains. For instance, 052
chain-of-thought (CoT) prompting has been employed to 053
understand real-world traffic scenarios, which mimics hu- 054
man reasoning by decomposing complex tasks into logical 055
stepwise sequences [5]. Fine-tuning refers to the continued 056
training of a pre-trained LLM on task-specific data. It has 057
demonstrated effectiveness in traffic detection and genera- 058
tion tasks [4]. The prompting-reasoning-finetuning frame- 059
work has been proposed for motion planning in autonomous 060
vehicles [20]. Moreover, retrieval-augmented generation 061
(RAG) extends LLM input with externally retrieved up-to- 062
date knowledge and has been leveraged to develop person- 063
alized warning systems [32]. 064

Synthesizing the potential of LLMs for customized mo- 065
bility services through their task-adaptive capabilities and 066
addressing the unmet need for ACC systems to adapt 067
to diverse travel scenarios, this study introduces a novel 068
contextual-personalized ACC (CP-ACC) framework. The 069
proposed CP-ACC leverages supervised fine-tuning (SFT) 070
to enable scenario-specific automatic longitudinal control 071
to improve user satisfaction. The main contributions of this 072
study are bi-folded: (i) A question and answer (Q&A) is de- 073
signed to fine-tune LLMs for generating CP-ACC outputs, 074
and (ii) Implemented with fine-tuned LLMs, the CP-ACC 075
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framework quantifies driver preferences, contextual infor-076
mation, and vehicle states to provide ACC service that man-077
ages multiple driving objectives, such as “safety”, “com-078
fort”, “mobility”, and “energy efficiency” in a balanced and079
adaptive manner.080

2. Related work081

2.1. LLMs for Autonomous Driving082

In the domain of autonomous driving, LLMs serve as so-083
phisticated reasoning engines capable of interpreting driv-084
ing objectives, user preferences, and nuanced contextual in-085
formation that are often difficult to encode by traditional086
rule-based approaches [2]. Building on recent advances,087
studies have investigated the use of LLMs to derive mo-088
tion planning strategies or control commands directly from089
sensor data and/or natural language directives. For ex-090
ample, DriveGPT4 processes multimodal inputs to gener-091
ate driving decisions along with interpretable reasoning,092
thereby enhancing system transparency and user trust [31].093
Talk2Drive was developed to translate high-level driving in-094
structions into executable vehicle actions, effectively link-095
ing human language with vehicle behavior [3]. Fu et al.096
employed an LLM (GPT-3.5) to interpret the driving envi-097
ronment in a human-like manner, particularly in complex098
situations such as long-tail corner cases [9]. Within coop-099
erative driving automation (CDA), LLMs have shown con-100
siderable promise for addressing key challenges such as in-101
ferring driver intent, predicting trajectories, and coordinat-102
ing complex multi-agent interactions [8, 30]. Yang et al.103
developed the language-to-trajectory dataset to support the104
training of Traj-LLM, which predicts multi-vehicle trajec-105
tories based on textual descriptions of vehicle interactions106
[34]. Jiang et al. proposed KoMA for cooperative decision-107
making among autonomous vehicles by understanding the108
intentions of surrounding vehicles, using LLM agents to109
mimic human cognition [14].110

2.2. Personalized ADAS111

Personalization in ADAS has attracted substantial attention112
recently, as customizing driving assistance for drivers’ pref-113
erences markedly improves user comfort, trust, and sys-114
tem acceptance [19]. Studies have shown that adaptive115
systems can capture and respond to heterogeneity in driv-116
ing behavior and style, establishing the foundation for truly117
intelligent and human-centered autonomous driving tech-118
nologies [11, 26]. Liao et al. introduced a digital twin119
framework to replicate individual driving patterns for real-120
time lane-change prediction [18]. Li et al. designed a121
graph neural network-based ramp-merging trajectory pre-122
dictor that incorporates driver-specific nodes, achieving an123
11.4% improvement over non-personalized baselines [17].124
Li et al. [16] encoded driver-specific preferences into mo-125

tion planning, thereby aligning vehicle responses with indi- 126
vidual expectations. Addressing personalized ACC, Wang 127
et al. employed Gaussian Processes to mimic personal- 128
ized car-following behavior [29]. Zhu et al. developed 129
a Kullback-Leibler (KL) divergence-based clustering algo- 130
rithm to categorize driving styles and provide personalized 131
ACC services accordingly [41]. Furthermore, inverse rein- 132
forcement learning has emerged as a powerful method for 133
identifying individual driving preferences to enable person- 134
alized ACC systems [23, 39]. 135

Leveraging recent advancements in foundation mod- 136
els, such as LLMs, vision-language models (VLMs), and 137
vision-language-action (VLA) frameworks, personalized 138
driving systems now possess enhanced abilities to adapt 139
to drivers’ preferences via natural language interaction and 140
multimodal reasoning. TravelPlanner+ tailors travel plans 141
using detailed user profiles[25], and LLM-PDA delivers 142
real-time driving suggestions based on behavioral risk pro- 143
files [32]. Cui et al. developed an on-board VLM system 144
that learns user preferences via a retrieval-augmented mem- 145
ory, reducing takeover rates by 65.2% [3]. PADriver utilizes 146
a multi-modal LLM to enable personalized autonomous 147
driving, incorporating a risk-aware assessment of potential 148
actions [15]. 149

Despite these advances, the integration of LLMs into au- 150
tonomous driving and personalized ADAS faces two key 151
limitations. First, most personalized control methods rely 152
on classical modeling approaches that are limited in inter- 153
preting complex contextual and preference-based nuances. 154
Second, comprehensive research on the specific application 155
of LLMs in ACC, particularly in scenarios requiring cus- 156
tomization based on drivers’ preferences and dynamic traf- 157
fic environments, remains scarce. This study aims to bridge 158
these research gaps by introducing the CP-ACC framework, 159
which uniquely synergizes the contextual reasoning capa- 160
bilities of LLMs with the real-time operational require- 161
ments of ACC, offering a scalable and adaptable paradigm 162
for smart and human-centered driving assistance. 163

3. Methodology 164

The proposed CP-ACC framework is outlined in Fig. 1. The 165
process begins with the construction of a supervised fine- 166
tuning (SFT) dataset composed of question-and-answer 167
(Q&A) pairs that integrate user profiles and real-time ve- 168
hicle states across specific driving scenarios. Details of 169
this dataset are provided in Sec. 3.1. Pre-trained LLMs are 170
then fine-tuned using this dataset to develop a task-specific 171
model tailored for CP-ACC applications, as discussed in 172
Sec. 3.2. When prompted with inputs resembling those in 173
the fine-tuning dataset, the CP-ACC model interprets natu- 174
ral language queries and generates longitudinal speed com- 175
mands by effectively balancing multiple driving objectives, 176
namely, “safety”, “comfort”, “mobility”, and “energy effi- 177
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CP-ACC SFT Dataset

User profiles
• Drivers’ preferences 

(Natural language)
• Contextual information
a) Weather
b) Traffic conditions
c) Lighting
d) …

Vehicle states
• Speed
• Bumper-to-bumper distance
• …

Question

• Driving objectives
a) Safety
b) Comfort
c) Mobility
d) Energy efficiency
e) Safety and fuel economy
f) …
• Longitudinal speed 

inference

SFT

Pre-trained LLMs

• LlaMa-3-8B

• Mistral-7B

Prompting

CP-ACC Service

• Identify driving 
objectives.

• Balance multiple 
objectives.

• Provide longitudinal 
speed advice.

Answer

Figure 1. An Overview of the CP-ACC Framework.

ciency”.178

3.1. CP-ACC SFT Dataset Generation179

A Q&A dataset is developed under the CP-ACC settings to180
fine-tune the LLMs, with an example illustrated in Fig. 2.181
Each question in the dataset includes both user profiles and182
vehicle states. The user profiles capture drivers’ preferences183
and contextual information such as traffic conditions, light-184
ing, and weather. The vehicle states consist of the ego vehi-185
cle’s position xj(t), speed vj(t), and previous acceleration186
aj(t − 1), as well as the preceding vehicle’s speed vj−1(t)187
and the bumper-to-bumper distance s(t) between the two188
vehicles, as defined in Eq. (1).189

s(t) = xj−1(t)− xj(t)− Lj−1, (1)190

where xj−1(t) and Lj−1 are the position and length of the191
preceding vehicle, respectively.192

With regard to the answer, CP-ACC first identifies one193
or more driving objectives, including “safety”, “comfort”,194
“mobility”, and “energy efficiency”. For example,195

• Please improve overall fuel efficiency and sustainabil-196
ity.” is categorized under “energy efficiency”.197

• It is snowing, keep a large following distance.” is cate-198
gorized under “safety”.199

• I care about energy usage but need to maintain a good200
pace.” addresses both “energy efficiency” and “mobil-201
ity”.202

• Maximize fuel savings and time efficiency with a203
smooth ride.” concerns “energy efficiency”, “mobil-204
ity”, and “comfort”.205

To accommodate diverse driving objectives, the CP-ACC206
framework updates the ego vehicle’s speed based on the207
standards illustrated in Fig. 3. It combines default settings208
with objective-specific settings derived from expert knowl-209
edge. Specifically, time-to-collision (TTC) serves as a pri-210
mary metric for safety and efficiency evaluation, defined211
in Eq. (2) [24]. The thresholds include TTC(t) = 4.0 s212
for “safety” [12], |jerk| ≤ 1.5 m/s3 for “comfort” [27],213
TTC(t) = 2.0 s for “mobility” [22], and a target speed of214

{Output: 
“safety_and_comfort:
### Summary: 
TTC = 4.0 s; Target speed = 33.3 
m/s; Jerk limit = ±1.5 m/s³; Clip 
a ∈ [-2.76, 0.24]
Δv = d / TTC = 108.37 / 4.0 = 
27.09
v_target_ttc = 32.49 m/s
Speed limit: min(32.49, 33.30) = 
32.49
a_needed = 32.49 - 18.58 = 13.90
a∈[-3.0, 3.0], a_clipped = 0.24
v_target = 18.82 m/s”}

{Input: 
“v=18.58 m/s, a_prev=-1.26 m/s², 
v_pre=32.49 m/s, bumper-to-
bumper distance=108.37 m.
‘Please avoid sudden braking 
while keeping a secure 
distance.’”}

Figure 2. A Q&A Pair Example.

vtarget = 20 m/s for “energy efficiency” [28]. For multi- 215
objective cases, these settings are integrated accordingly to 216
balance competing priorities. 217

TTC(t) =

{
s(t)

∆v(t) , if vj−1(t) < vj(t);

Inf, otherwise,
(2) 218

where ∆v(t) = vj(t) − vj−1(t) denotes the relative speed 219
between the ego vehicle and the preceding vehicle. 220

3.2. Supervised Fine-tuning (SFT) 221

SFT employs task-specific Q&A pairs to refine pre-trained 222
LLMs, enhancing both their capabilities and controllability. 223
By aligning the training objectives with human instructions 224
rather than generic next-token prediction, SFT constrains 225
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• v_target: 33.3m/s
• Acceleration range: [-3.0, 3.0]m/s2
• TTC: 2.5s

Default settings:

Objective-specific settings:

• "safety":                                                     {"TTC": 4.0s, "v_target": 33.3m/s,  "jerk_limit": None},
• "comfort":                                                    {"TTC": 2.5s, "v_target": 33.3m/s,  "jerk_limit": ± 1.5m/s3},
• "mobility":                                              {"TTC": 2.0s, "v_target": 33.3m/s,  "jerk_limit": None},
• "energy_efficiency":                                          {"TTC": 2.5s, "v_target": 20.0m/s,  "jerk_limit": None},
• "safety_and_comfort":                                         {"TTC": 4.0s, "v_target": 33.3m/s,  "jerk_limit": ± 1.5m/s3},
• "safety_and_mobility":                                        {"TTC": 3.0s, "v_target": 33.3m/s,  "jerk_limit": None},
• "comfort_and_mobility":                                       {"TTC": 2.0s, "v_target": 33.3m/s,  "jerk_limit": ± 1.5m/s3},
• "safety_and_energy_efficiency":                               {"TTC": 4.0s, "v_target": 20.0m/s,  "jerk_limit": None},
• "energy_efficiency_and_comfort":                              {"TTC": 2.5s, "v_target": 20.0m/s,  "jerk_limit": ± 1.5m/s3},
• "energy_efficiency_and_mobility":                        {"TTC": 2.0s, "v_target": 20.0m/s,  "jerk_limit": None},
• "safety_and_mobility_and_comfort":                       {"TTC": 3.0s, "v_target": 33.3m/s,  "jerk_limit": ± 1.5m/s3},
• "safety_and_energy_efficiency_and_comfort":                   {"TTC": 4.0s, "v_target": 20.0m/s,  "jerk_limit": ± 1.5m/s3},
• "safety_and_energy_efficiency_and_mobility":             {"TTC": 3.0s, "v_target": 20.0m/s,  "jerk_limit": None},
• "energy_efficiency_and_mobility_and_comfort":            {"TTC": 2.0s, "v_target": 20.0m/s,  "jerk_limit": ± 1.5m/s3},
• "safety_and_energy_efficiency_and_comfort_and_mobility": {"TTC": 3.0s, "v_target": 20.0m/s,  "jerk_limit": ± 1.5m/s3}.

Figure 3. CP-ACC Settings.

model outputs to desired response characteristics and do-226
main knowledge. This approach offers an efficient pathway227
for human intervention in model behavior and enables rapid228
adaptation to specialized domains without extensive retrain-229
ing or architectural modification [37].230

To provide CP-ACC services, LLMs including LLaMA-231
3-8B [10] and Mistral-7B [13] were fine-tuned on the232
CP-ACC SFT dataset. Quantized low-rank adaptation233
(QLoRA) was employed to minimize the memory footprint234
without degrading performance. First, NormalFloat4 (NF4)235
quantization compressed the base model’s weights to 4-bit236
precision [6]. A secondary quantization step was then ap-237
plied to the low-rank adaptation matrices and optimizer con-238
stants to further reduce the memory usage. Additionally,239
NVIDIA’s unified memory feature was utilized to offload240
optimizer states to CPU RAM when GPU memory capacity241
is exceeded, thereby preventing out-of-memory errors dur-242
ing training [37].243

4. Experiment Setup244

The CP-ACC models were fine-tuned using the LLaMA245
Factory framework [40] on 4× NVIDIA Tesla T4 GPUs (16246
GB each). The key hyperparameters used during fine-tuning247
are summarized in Tab. 1. QLoRA parameters were config-248
ured with a rank of 8 and an alpha value of 16 to balance249
model capacity and memory efficiency. A 4-bit quantization250
was employed to reduce the model size while maintaining251
acceptable fine-tuning performance.252

4.1. Simulation Scenario253

To capture acceleration, cruising, and deceleration phases,254
the preceding vehicle’s trajectory is generated using the255

Parameters Values

Learning rate 5e-5
Number of epochs 2

Numerical precision fp16
Batch size per device 1

QLoRA rank 8
QLoRA alpha 16

Quantization bits 4

Table 1. The setting of hyperparameters.

fifth-order polynomial specified in Eq. (3). 256

x(t) = b0 + b1t+ b2t
2 + b3t

3 + b4t
4 + b5t

5, (3) 257

where x(t) denotes the vehicle’s position at time t. b0, and 258
the coefficients b1, b2, b3, b4, and b5 are determined by en- 259
forcing the boundary conditions listed below. 260

x(0) = x0; ẋ(0) = v0; ẍ(0) = a0;

x(T ) = xT ; ẋ(T ) = vT ; ẍ(T ) = aT ,
(4) 261

where v(0) and a(0) are the initial speed and accelera- 262
tion, respectively. T is the time duration. By specifying 263
the boundary conditions as x(0) = 0, x(T ) = 150.0 m, 264
v(0) = v(T ) = 0 m/s, a(0) = a(T ) = 0 m/s2, and 265
T = 15.0 s, a smooth trajectory can be generated for the 266
preceding vehicle from the initial to the final state. The ego 267
vehicle is generated at position −20 m, and with an initial 268
speed of 5.0 m/s and zero acceleration (0 m/s2). 269
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4.2. Benchmarks270

To comprehensively assess the performance of the pro-271
posed CP-ACC framework, benchmark comparisons are272
conducted against established car-following models com-273
monly used in both real-world applications and simulation274
studies, including a linear feedback-based ACC model and275
intelligent driver models (IDM) car-following models. In276
addition, the evaluation incorporates zero-shot and few-277
shot LLMs to examine the impact and effectiveness of SFT278
within the proposed framework.279

4.2.1. Linear feedback-based ACC Model280

A linear feedback-based ACC model, which regulates ac-281
celeration based on gap and speed errors, is formulated in282
Eq. (5).283

aACC
j (t) = k1(s(t)− s0 − thwvj(t)) + k2∆v(t), (5)284

where s0 represents the minimum bumper-to-bumper dis-285
tance. thw = 2 s is the current time-gap setting, and286
k1 = 0.23 s−2 and k2 = 0.07 s−1 are the feedback gains287
for the gap and speed errors, respectively [21].288

4.2.2. IDM Car-following Model289

The IDM is a collision-free car-following model capable290
of generating realistic acceleration profiles, as expressed by291
Eq. (6).292

aIDM
j (t) = a

[
1−

(
vj(t)

vtarget

)δ

−
(
s∗(vj(t),∆v(t))

sj(t)

)2
]
,

s∗(vj(t),∆v(t)) = s0 +max(0, vj(t)Tg +
vj(t)∆v(t)

2
√
ab

),

(6)293
where vtarget represents the target speed, Tg is the bumper-294
to-bumper time gap to the preceding vehicle. δ is the accel-295
eration exponent, and b denotes the comfortable decelera-296
tion. The term s∗ indicates the desired distance [27].297

Since the IDM car-following model inherently lacks the298
capability to interpret driving objectives expressed in nat-299
ural language, we introduce multiple IDM configurations300
with different parameter settings as benchmarks to emulate301
specific driving objectives. For instance, parameter settings302
such as Tg = 2.0 s represents “mobility”, Tg = 4.0 s cor-303
responds to “safety”, ve = 20.0 m/s targets “energy effi-304
ciency”, δ = 1 aligns with “comfort” [27].305

4.2.3. Zero-shot LLMs306

Distinct from fine-tuning, zero-shot prompting requires307
only a natural language instruction to guide the LLMs, with-308
out necessitating gradient-based parameter updates for task309
adaptation [1]. Despite the absence of task-specific weight310
adjustments, LLMs can still demonstrate notable zero-shot311

performance across various domains [7]. To generate ACC 312
results using the zero-shot approach, the CP-ACC settings 313
and a question formatted as illustrated in Fig. 2 are directly 314
provided to the LLMs as prompts. 315

4.2.4. Few-shot LLMs 316

In the few-shot prompting paradigm, LLMs receive a nat- 317
ural language task description and a limited number of 318
demonstration examples, without any model parameter up- 319
dates [1]. Specifically, several Q&A pairs from the CP-ACC 320
SFT dataset are then presented to the LLMs to guide the 321
subsequent generation of ACC output. 322

5. Results 323

The performance of zero-shot LLMs, few-shot LLMs, and 324
fine-tuned LLMs was evaluated on a driving objective iden- 325
tification task using 20 randomly generated user profiles. 326
As illustrated in Fig. 5, both LLaMA-3-8B and Mistral- 327
7B achieved over 50.0% accuracy in the zero-shot setting, 328
demonstrating a baseline understanding of user goals with- 329
out any task-specific examples. Adding a few-shot context, 330
i.e., including several examples in the prompt, led to im- 331
proved results for both models, with each correctly iden- 332
tifying 14 out of 20 objectives. This suggests that few- 333
shot prompting helps the models better interpret user in- 334
puts by providing relevant cues. The best performance 335
was achieved through SFT, particularly with LLaMA-3-8B, 336
which achieved an accuracy of 80.0%. Mistral-7B main- 337
tained its performance at 14 correct predictions after SFT. 338
The models performed more accurately when the user pro- 339
file contained a single objective (e.g., “safety”, “comfort”, 340
or “energy efficiency”) compared to when multiple objec- 341
tives were combined (e.g., “safety and energy efficiency” 342
or “energy efficiency, mobility, and comfort”). Some er- 343
rors were attributed to ambiguous language in the prompts. 344
For example, the term “efficient” could refer to either “en- 345
ergy efficiency” or “mobility”, leading to misclassification. 346
These findings highlight the importance of precise and un- 347
ambiguous language when designing prompts or datasets 348
for objective identification tasks. 349

Fig. 4 compares the longitudinal control performance 350
of a linear feedback-based ACC, IDM car-following mod- 351
els, and LLMs across three sequential stages represent- 352
ing different driving objectives: (i) Stage 1 (0–5 s): 353
“Energy efficiency and comfort”; (ii) Stage 2 (6–10 s): 354
“Safety”; and (iii) Stage 3 (11–15 s): “Safety and mobil- 355
ity”. This setup simulates realistic shifts in driving prior- 356
ities, such as a sudden change in road or weather condi- 357
tions requiring a transition from comfort-focused to safety- 358
critical behavior. Conventional models, including linear 359
feedback-based ACC and objective-specific IDM variants, 360
apply fixed control strategies without adapting to chang- 361
ing objectives. Although they maintained smooth trajec- 362
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Figure 4. Comparison of Vehicle Trajectories under Different ACC Strategies.

Figure 5. Results of Driving Objectives Identification.

tories and safe spacing comparable to the preceding vehi-363
cle, they lacked flexibility in adjusting behavior dynami-364
cally. LLM-based controllers exhibited varied performance.365
Specifically, LLaMA-3-8B (Zero-shot), Mistral-7B (Few-366
shot), and LLaMA-3-8B (Few-shot) failed to recognize the367
change in safety requirements, resulting in unsafe following368
behavior and eventual collisions. Mistral-7B (Zero-shot)369
adopted a conservative approach, maintaining a nearly con-370
stant speed even as the preceding vehicle accelerated, which371
is an overcautious behavior driven by the “safety” objective.372
Notably, the CP-ACC models (i.e., Mistral-7B (SFT) and373
LLaMA-3-8B (SFT)) successfully adapted to the changing374
driving objectives and consistently followed the expected375
output format without unnecessary reasoning steps. This376

demonstrates the strong potential of SFT in enabling LLMs 377
to handle domain-specific control tasks and dynamically ad- 378
just to evolving driving goals. 379

Tab. 2 presents the TTC statistics across three driving 380
stages. Two key metrics are reported per stage: NInf is 381
the number of cases where the ego vehicle’s speed is less 382
than or equal to the preceding vehicle’s speed, represent- 383
ing an “absolute safety” condition; and Avg. TTC denotes 384
the average TTC value when the ego vehicle is faster, in- 385
dicating potential collision risk. Notably, both fine-tuned 386
models, i.e., Mistral-7B (SFT) and LLaMA-3-8B (SFT), 387
demonstrate strong safety performance, comparable to the 388
Safety-based IDM. In Stage 2, where “safety” is prioritized, 389
Mistral-7B (SFT) achieves the highest average TTC (54.9 s) 390
among all models except the Safety-based IDM, confirming 391
its ability to maintain safe following distances. In Stage 3, 392
requiring a balance between “safety” and “mobility”, the 393
LLaMA-3-8B (SFT) maintains an average TTC of 5.1 s, 394
which is comparable to the Mobility-based IDM. Mistral- 395
7B (SFT) shows a more aggressive behavior aligned with 396
“mobility”, achieving a lower TTC of 4.8 s, but still above 397
the critical safety threshold of 2.0 s. 398

Tab. 3 presents the average of absolute values of jerk, 399
which reflects “comfort”. In Stage 1, where comfort and 400
energy efficiency are the primary objectives, Mistral-7B 401
(SFT) maintains low jerk values (1.0 m/s3), similar to the 402
Comfort-based IDM and linear feedback-based ACC, in- 403
dicating smooth acceleration and high passenger comfort. 404
In contrast, LLaMA-3-8B (SFT) records a higher jerk (2.1 405
m/s3), suggesting more aggressive acceleration in pursuit of 406
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Table 2. TTC Statistics.

Models Stage 1 Stage 2 Stage 3

NInf Avg. TTC NInf Avg. TTC NInf Avg. TTC

Linear feedback-based ACC 3 10.4 4 11.2 0 2.3
Mobility-based IDM 4 3.1 4 18.5 0 5.1
Safety-based IDM 4 13.5 5 N/A 0 9.6

Energy efficiency-based IDM 4 3.2 4 39.1 0 5.6
Comfort-based IDM 4 3.6 4 53.9 0 5.8

Mistral-7B (SFT) 4 5.1 4 54.9 0 4.8
LLaMa-3-8B (SFT) 4 4.5 3 31.5 0 5.1

NInf: Number of infinity values; Avg. TTC: Average value of TTC; N/A: Not applicable.

Table 3. Jerk Statistics.

Models Stage 1 Stage 2 Stage 3

Linear feedback-based ACC 1.0 0.8 0.8
Mobility-based IDM 1.6 0.8 0.4
Safety-based IDM 1.7 0.5 0.5

Energy efficiency-based IDM 1.6 0.7 0.5
Comfort-based IDM 1.0 0.5 0.6

Mistral-7B (SFT) 1.0 0.3 1.4
LLaMa-3-8B (SFT) 2.1 1.5 0.7

Avg. Abs. Jerk: Average of absolute values of jerk.

energy-efficient speeds.407

In summary, the findings underscore CP-ACC’s capac-408
ity to understand and modulate driving objectives. SFT409
LLMs effectively balance “safety”, “comfort”, “mobility”,410
and “energy efficiency” by adapting longitudinal control411
strategies in accordance with evolving driver preferences,412
contextual information, and vehicle states.413

6. Conclusions414

The increasing advancements in intelligent transportation415
systems (ITS) and autonomous driving technologies have416
significantly raised public expectations for mobility ser-417
vice quality. Existing advanced driver assistance systems418
(ADAS), particularly adaptive cruise control (ACC), strug-419
gle to deliver automatic longitudinal control services that420
holistically account for drivers’ preferences and dynamic421
traffic environments. Motivated by the emergent capabili-422
ties of large language models (LLMs) in natural language423
processing, contextual reasoning, and high customizability,424
this paper proposes a contextual-personalized ACC (CP-425
ACC) framework. The framework was realized via super-426
vised fine-tuning (SFT) of Llama-3-8B and Mistral-7B us-427
ing a CP-ACC task-specific dataset. The proposed CP-ACC428
enables natural language interaction to interpret and bal-429
ance multiple, often competing driving objectives such as430

“safety”, “comfort”, “mobility”, and “energy efficiency”. 431
This work marks a crucial step toward the realiza- 432

tion of smart and human-centered ACC systems. Fu- 433
ture development of this framework will integrate mul- 434
timodal data, including naturalistic driving data, cam- 435
era, and LiDAR inputs, to enhance contextual aware- 436
ness and support more sophisticated decision-making. 437
Crucially, real-world testing will be deployed to vali- 438
date the practical efficacy of this framework and facil- 439
itate its integration into future autonomous driving sys- 440
tems. 441
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