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Abstract

Cooperative perception enhances autonomous driving by001
leveraging Vehicle-to-Everything (V2X) communication for002
multi-agent sensor fusion. However, most existing meth-003
ods rely on single-modal data sharing, limiting fusion per-004
formance—particularly in heterogeneous sensor settings005
involving both LiDAR and cameras across vehicles and006
roadside units (RSUs). To address this, we propose Ra-007
dian Glue Attention (RG-Attn)—a lightweight and gener-008
alizable cross-modal fusion module that unifies intra-agent009
and inter-agent fusion via transformation-based coordinate010
alignment and a unified sampling/inversion strategy. RG-011
Attn efficiently aligns features through a radian-based at-012
tention constraint, operating column-wise on geometrically013
consistent regions to reduce overhead and preserve spa-014
tial coherence, thereby enabling accurate and robust fu-015
sion. Building upon RG-Attn, we propose three cooper-016
ative architectures. The first, Paint-To-Puzzle (PTP), pri-017
oritizes communication efficiency but assumes all agents018
have LiDAR, optionally paired with cameras. The sec-019
ond, Co-Sketching-Co-Coloring (CoS-CoCo), offers maxi-020
mal flexibility, supporting any sensor setup (e.g., LiDAR-021
only, camera-only, or both) and enabling strong cross-022
modal generalization for real-world deployment. The third,023
Pyramid-RG-Attn Fusion (PRGAF), aims for peak detection024
accuracy with the highest computational overhead. Exten-025
sive evaluations on simulated and real-world datasets show026
our framework delivers state-of-the-art detection accuracy027
with high flexibility and efficiency.028

1. Introduction029

The famous phrase “United we stand, divided we fall” by030
Aesop aptly captures the essence of multi-agent cooperative031
perception. Shared and fused perception information serves032
as a crucial stepping stone—providing augmented environ-033
mental awareness as illustrated in Fig. 1—that enables more034
informed maneuvering decisions, helping to prevent traffic035
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Figure 1. A representative scenario where the aggregated Li-
DAR BEV features from the ego and cooperating agents are in-
sufficient to detect challenging regions. By fusing camera fea-
tures—particularly from the ego agent in this frame, where ob-
jects are clearly captured—into the BEV space, additional seman-
tic cues are introduced, leading to improved detection. This en-
hancement is evident in both the heatmap (brighter and with higher
contrast) and the final detection output.

accidents as shown in Fig. 2(a). By overcoming the limi- 036
tations of single-agent perception through the exchange of 037
processed sensing data among multiple agents, challenges 038
like non-line-of-sight (NLOS) occluded blind zones, partial 039
object detection and limited detection range can be signifi- 040
cantly mitigated. Typically, cooperative perception relies on 041
the integration of V2X wireless communication, sensor data 042
processing, and fusion modules to form a unified collabora- 043
tive framework. Beyond intelligent transportation systems, 044
cooperative perception also supports multi-robot use cases 045
like factory automation and panoramic imaging. 046

While our focus is on cooperative perception, advances 047
in single-agent perception continue to provide valuable 048
foundations—such as stronger vision backbones and atten- 049
tion mechanisms for feature extraction and correlation. A 050
persistent debate exists between single-modal and multi- 051
modal designs in autonomous driving, especially concern- 052
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Figure 2. (a) A representative traffic scenario where cooperative perception enables agents to see through occlusions and prevent collisions.
(b) Homogeneous modality multi-agent setting for cooperative perception. (c) Heterogeneous modality multi-agent setting with a restric-
tion on single modality per agent for cooperative perception. (d) Heterogeneous full multi-modal multi-agent setting without restrictions
on the number or types of modalities for cooperative perception, partially covered by PTP/PRGAF and fully covered by CoS-CoCo.

ing the trade-off between cost and performance. Despite de-053
ployment challenges, multi-modal approaches have shown054
empirical advantages in accuracy, robustness, and detection055
range, consistently outperforming single-modal baselines056
across public benchmarks.057

In contrast, most cooperative perception frameworks rely058
on fusing a single sensor modality (e.g., LiDAR or cam-059
era) across multiple agents, as illustrated in Fig. 2(b). Re-060
cent methods like HM-ViT [24] and HEAL [16] have par-061
tially enabled heterogeneous setups, where each agent con-062
tributes only one modality (see Fig. 2(c)). However, fully063
multi-modal, multi-agent cooperation shown in Fig. 2(d)064
remains largely unexplored. In fact, naively combining065
modalities per agent within these frameworks often leads066
to degraded performance, mainly due to the unreliability of067
camera-derived depth. This underscores a critical gap be-068
tween current cooperative frameworks and the potential of069
full multi-modal multi-agent collaboration. Furthermore, as070
we aim to bridge this gap, it is equally important to ensure071
compatibility with agents equipped with only single sensing072
modality. This raises a central research question: How can073
we fully leverage every available sensor on every participat-074
ing agent for cooperative perception? While accuracy is the075
primary goal, practical deployment also demands efficiency,076
communication feasibility, and system-level scalability.077

In this paper, we propose Radian-Glue Attention (RG-078
Attn), a lightweight and effective module for multi-modal079
feature fusion. RG-Attn samples the LiDAR-derived080
Bird’s Eye View (BEV) feature map using radian divisions081
aligned with each camera’s field of view (FOV), enabling082
column-wise attention-based fusion. This allows seman-083
tic enrichment of BEV features via projected camera cues084
while maintaining high computational efficiency. Build-085
ing on RG-Attn, we introduce three cooperative percep-086
tion architectures: Paint-To-Puzzle (PTP), Co-Sketching-087
Co-Coloring (CoS-CoCo) and Pyramid-RG-Attn Fusion088

(PRGAF), designed to address diverse deployment needs. 089
PTP performs cross-modal fusion within each agent be- 090
fore a single-stage inter-agent fusion. It assumes LiDAR- 091
equipped agents and unifies sharing data format. CoS-CoCo 092
adopts a two-stage inter-agent fusion process: first fus- 093
ing LiDAR BEV features among LiDAR-equipped agents, 094
followed by camera feature enhancement from camera- 095
equipped agents. This structure supports heterogeneous 096
configurations, allowing participation from LiDAR-only, 097
camera-only, or multi-modal agents. PRGAF integrates 098
RG-Attn directly into the multi-scale pyramid structure of 099
cross-agent fusion, fully leveraging camera semantics at 100
multiple resolutions to enrich LiDAR features—albeit with 101
significantly higher computational cost. These designs re- 102
flect distinct trade-offs based on the aforementioned moti- 103
vations: PTP favors efficiency, CoS-CoCo balances gener- 104
ality and robustness, and PRGAF targets peak detection per- 105
formance. All three outperform existing approaches by ex- 106
ploiting available sensor modalities while supporting real- 107
time inference. In summary, our main contributions are: 108

• We propose RG-Attn, a novel and generalizable cross- 109
modal fusion module. RG-Attn supports both intra-agent 110
and inter-agent cross-modal fusion, delivering robust per- 111
formance with high computational efficiency. 112

• We design three cooperative architectures that integrate 113
cross-modal and cross-agent fusion, each tailored to dif- 114
ferent deployment scenarios and performance trade-offs. 115

• Extensive experiments on cooperative perception bench- 116
marks demonstrate the effectiveness of our fusion module 117
and architectures, achieving state-of-the-art performance. 118

2. RELATED WORKS 119

2.1. Single-Agent Perception 120

In single-agent perception, a wide range of single-modal ap- 121
proaches have laid the groundwork for both single-modal 122
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and multi-modal research. Benchmarks such as KITTI and123
nuScenes [1] have driven advances in both the LiDAR and124
camera tracks. For LiDAR, methods like PointNet [2], pillar125
encoding, and voxel encoding have significantly improved126
feature aggregation, enabling compact and accurate scene127
representations. In the camera domain, performance has128
rapidly advanced from monocular setups to multi-view in-129
puts and depth-aware methods, notably with the introduc-130
tion of Lift-Splat-Shoot (LSS) [18]. Transformer-based ar-131
chitectures like ViT and Point Transformer [31, 35] have132
further boosted both LiDAR and camera pipelines. Re-133
cently, these two modalities have increasingly converged134
under BEV-based frameworks [4, 37], which unify 3D ob-135
ject queries and positional encoding across modalities.136

Multi-modal approaches, in contrast, focus on bridging137
LiDAR and camera data. Early work such as PointPainting138
[22] injected camera semantics into LiDAR point clouds.139
Later, DETR-style models [32] leveraged attention to model140
cross-modality relationships. The rise of BEV-based fusion141
methods [14, 29] further enabled cross-modality alignment142
via attention, benefiting from BEV’s unified spatial repre-143
sentation and query efficiency. A more recent trend [6, 33]144
challenges the reliability of depth estimated from camera145
data. Instead of relying on depth, these methods directly146
project camera features into LiDAR-derived BEV space us-147
ing attention mechanisms, achieving more robust fusion.148

2.2. Multi-Agent Cooperative Perception149

Multi-agent cooperative perception offers distinct advan-150
tages by approaching perception tasks from a broader,151
system-level perspective. With the emergence of rich152
datasets [27, 28, 30, 36], the field has undergone multiple153
waves of technical innovation. Early efforts explored early154
fusion of raw sensor data [3] to retain signal fidelity and155
late fusion of detection results [19] to reduce communica-156
tion overhead. More recent methods [16, 24, 25, 34] employ157
intermediate feature fusion to balance perception accuracy158
and V2X bandwidth efficiency.159

Various auxiliary advances have strengthened the co-160
operative framework: Who2Com and Where2comm [7,161
13] prioritized selective message transmission, FedBEVT162
[20] introduced federated learning to preserve privacy, and163
Coopernaut and ICOP [5, 9] demonstrated performance164
gains in end-to-end autonomous driving. For practical real-165
world deployment, studies such as CoAlign [15] and CBM166
[21] have demonstrated significant advancements in min-167
imizing relative localization errors—essential for reliable168
coordinate transformations. Additionally, research in ve-169
hicular communication [10, 12, 17] has enhanced protocol170
efficiency to better support perception-layer demands. Fu-171
sion techniques have evolved from simple concatenation to172
transformer-based and pyramid-based designs. However,173
most prior work remains limited to single-modality. Recent174

advances such as HM-ViT [24], BM2CP [34], and HEAL 175
[16] have begun incorporating multi-modality. Yet, HM- 176
ViT and HEAL only allow one shared modality per agent, 177
and although BM2CP supports multi-modality per agent, 178
its performance still lags behind the LiDAR-only HEAL. 179
The existing gap is how much further can perception be im- 180
proved if all available multi-agent sensor sources are effi- 181
ciently fused, this paper aims to address this critical gap. 182

3. METHODOLOGY 183

3.1. Radian-Glue-Attention (RG-Attn) 184

Since the direct yet unreliable depth estimation originating 185
from camera data is discarded, the key to effective cross- 186
modal fusion lies in accurately projecting 2D semantic 187
features from camera views onto the BEV feature map 188
generated by the LiDAR backbone. Let the solid LiDAR 189
BEV feature map be denoted as F bev

j ∈ RC1×H1×W1 190
and the camera feature from camera k on agent i be 191
F cam
ik ∈ RC2×H2×W2 , where j and i represent agent 192

indices and ik identify the camera k mounted on agent 193
i. To enable cross-modal fusion at both intra-agent and 194
inter-agent levels, we compute the transformation ma- 195
trix Ti→j from agent i to agent j in BEV space, and 196
use the camera-to-agent transform tik→i to derive the 197
camera’s BEV coordinate location (x, y) on agent j as 198
tik→j = Ti→j · tik→i. The rotation component Ri→j of 199
Ti→j and the rotation matrix Rik→i of camera k to its 200
mounted agent i form Rik→j as Ri→j · Rik→i, transform- 201
ing the horizontal FOV range

[
− θFOV

2 , θFOV
2

]
from the local 202

camera frame to the BEV frame of agent j
[
θstart
ik→j , θ

end
ik→j

]
203

as
[
atan

(
Rik→j · u

(
− θFOV

2

))
, atan

(
Rik→j · u

(
θFOV
2

))]
, 204

where u denotes the unit direction vector. 205
Once the relative transformation and horizontal FOV 206

range of camera k from agent i are established on the 207
target BEV map of agent j as shown in Fig. 3, a geo- 208
metric projection relationship is constructed, determining 209
the angular span where the camera features will be pro- 210
jected. We discretize this angular span into W2 sub-sectors, 211
each aligned with a column in the camera feature matrix 212
F cam
ik ∈ RC2×H2×W2 . Each sub-sector is further radi- 213

ally divided into h segments, forming a polar grid. The 214
maximum projection radius R is set to half the diagonal 215
length of the BEV map to balance coverage and distor- 216
tion. The number of radial segments h to divide R, is set 217
to match BEV height H1 in our setting. Bilinear sam- 218
pling is then used to project BEV features onto this po- 219
lar grid, extracting a sampled sub-BEV map centered at 220

tik→j , with angular range
[
θstart
ik→j , θ

end
ik→j

]
, angular reso- 221

lution W2, radial extent R and radial resolution h. This 222
defines a grid sector sampling configuration Setik→j as: 223

(tik→j ,
[
θstart
ik→j , θ

end
ik→j

]
, W2, R, h). Using this, a sector- 224
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Figure 3. RG-Attn enables cross-modal fusion between LiDAR
BEV and camera features. Camera parameters (FOV, range, ex-
trinsics) define a polar grid sector for sampling a sub-BEV map
from the LiDAR BEV. Both the sub-BEV and camera features
are augmented with positional embeddings, from which queries
(sub-BEV) and keys/values (camera) are generated via the PL pro-
cess. Column-wise alignment along the width enables efficient
multi-head attention. The fused features are then mapped back
to the original BEV space via grid sector inversion and integrated
through element-wise addition.

shaped region is sampled from the BEV map and rescaled225
into a rectangular tensor F sub-bev

ik→j ∈ RC1×H1×W2 as:226

F sub-bev
ik→j = GridSectorSample(F bev

j , Setik→j). (1)227

The sampled LiDAR sub-BEV F sub-bev
ik→j ∈ RC1×H1×W2228

aligns with the camera feature map F cam
ik ∈ RC2×H2×W2229

on width dimension. This column-wise alignment enables230
fusion to be performed in C×H spaces per column, instead231
of the full C × H × W BEV space, thereby reducing the232
complexity from quadratic to linear in W .233

Both features are first augmented with positional em-234
beddings, with queries generated from the sub-BEV fea-235
ture and keys/values from the camera feature via re-236
shaping and linear layer projection, collectively de-237
noted as the PL (Positional-embedding-reshape-Linear-238
layer-Projection) process. Multi-head attention is applied239
in parallel within the C × H space of each column across240
the W -dimension for cross-modal fusion:241

F
fus-bev
ik→j = Attn(PL(F sub-bev

ik→j ), PL(F cam
ik ), PL(F cam

ik )). (2)242

The camera semantics are thus “glued” onto the sub-243
BEV representation in a radian-aligned, column-wise man-244

ner. Subsequently, grid sector inversion utilizing the same 245
geometric correspondence but reversing the bilinear sam- 246
pling direction, is applied to inversely sample the enhanced 247
but distorted feature back to the original BEV grid as: 248

F fus-bev
ik→j = GridSectorInverse(F

fus-bev
ik→j , Setik→j). (3) 249

Finally, the enhanced feature map F fus-bev
ik→j is element- 250

wise added to the original BEV feature map F bev
j to obtain 251

the fused output F fus-bev
j+ik ∈ RC1×H1×W1 as: 252

F fus-bev
j+ik = F bev

j + F fus-bev
ik→j . (4) 253

The entire RG-Attn pipeline in Fig. 3—comprising grid 254
sector sampling, attention-based fusion, inverse sampling, 255
and feature integration—can be compactly expressed as: 256

F fus-bev
j+ik = RG-Attn(F bev

j , F cam
ik ). (5) 257

3.2. RG-Attn enabled Cooperative Perception 258

3.2.1. Paint-To-Puzzle (PTP) 259

The core idea of PTP is that each agent constructs the cross- 260
modal fused BEV feature map individually before engag- 261
ing in cross-agent fusion. As illustrated in Fig. 4(a), agents 262
equipped with both LiDAR and cameras first “paint” their 263
local environments and then “puzzle” these together in a 264
collaborative manner. Accordingly, the RG-Attn module is 265
applied solely within each individual agent in PTP, generat- 266
ing F fus-bev

ik→i multiple times, once for each camera k onboard 267
agent i. These semantically enriched features are subse- 268
quently aggregated to produce F fus-bev

i+
∑n

k=1 ik as: 269

F fus-bev
i+

∑n
k=1 ik = RG-Attn(F bev

i , {F cam
ik | k = 1, 2, . . . , n}),

(6) 270
where i ∈ AgentsSetLiDAR+camera. For collaborative 271
LiDAR-only agents, the original BEV feature map is re- 272
tained and directly used in the subsequent “puzzle” step. 273

The Pyramid Fusion module from HEAL [16] is adopted 274
as the backbone for the “puzzle” part, fusing all available 275
BEV feature maps into a richer global BEV space: 276

FPTP = fpyramid fusion

(
F fus-bev
i+

∑n
k=1 ik, F

bev
m

)
, (7) 277

where i ∈ AgentsSetLiDAR+camera and m ∈ 278
AgentsSetLiDAR only. The multi-scale architecture and 279
foreground-aware mechanisms of the fusion module en- 280
hance the integration of both semantically enriched and raw 281
LiDAR features from diverse perspectives. Camera-only 282
agents are excluded from this process due to their lack of 283
reliable, depth-grounded BEV features. Importantly, the 284
PTP design standardizes all shared perception into a unified 285
BEV-based payload format. 286
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Figure 4. Illustration of the PTP, PRGAF and CoS-CoCo architectures. In all designs, all vehicles are capable of executing the perception
pipeline independently, with or without cross-agent features. For illustration clarity, one vehicle (e.g., the ego) is shown as the receiver of
external features and performs the complete cooperative perception process.

3.2.2. Co-Sketching-Co-Coloring (CoS-CoCo)287

As shown in Fig. 4(c), the CoS-CoCo framework is struc-288
tured into two distinct fusion stages: Co-Sketching, which289
fuses LiDAR BEV features among LiDAR-equipped agents290
to construct a shared environmental “skeleton,” and Co-291
Coloring, which overlays semantic information from cam-292
era views onto this skeleton.293

In the Co-Sketching stage, similar to the BEV fusion in294
PTP, the Pyramid Fusion module is adopted to aggregate295
all available LiDAR BEV features into a unified and robust296
BEV representation F bev

pyr ∈ RC1×H1×W1 as:297

F bev
pyr = fpyramid fusion

(
F bev
l

)
, (8)298

where l ∈ AgentsSetLiDAR, indicating that each LiDAR-299
equipped agent jointly “sketches” the spatial foundation.300

During the Co-Coloring stage, all camera feature301
maps—regardless of their source agents—are projected302
onto the shared BEV skeleton using the RG-Attn module,303
which provides robust cross-modality alignment in hetero-304
geneous multi-agent settings. Based on the total number of305
camera-equipped agents and their respective cameras, the306
fusion process is expressed as:307

FCoS-CoCo = RG-Attn(F bev
pyr, {F cam

ck | k = 1, 2, . . . , n}),
(9)308

where c ∈ AgentsSetcamera and n is the number of cam-309
eras per agent in the set.310

A key advantage of CoS-CoCo lies in its ability to re-311
integrate camera-only agents into the collaborative percep-312
tion pipeline by deferring camera-to-BEV projection to a313
centralized, skeleton-based stage. However, this approach314
requires managing two distinct formats of cooperative pay-315
loads—LiDAR BEV and camera 2D features.316

3.2.3. Pyramid-RG-Attn Fusion (PRGAF)317

In contrast to the modular pipelines of PTP and CoS-318
CoCo, we design a performance-driven variant that inte-319
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Figure 5. Structural comparison of PTP, PRGAF, and CoS-CoCo
architectures, highlighting where and how RG-Attn is applied in
relation to the cross-agent Pyramid Fusion module.

grates RG-Attn directly into the multi-scale pyramid fusion 320
structure, as illustrated in Fig. 4(b). Unlike PTP and CoS- 321
CoCo—where RG-Attn is applied either before or after the 322
pyramid at a single scale (as shown in Fig. 5)—this uni- 323
fied architecture performs RG-Attn at each resolution level 324
within the pyramid, enabling hierarchical cross-modal en- 325
hancement prior to cross-agent fusion. 326

Concretely, we extract multi-scale BEV and camera fea- 327
tures at three resolutions (e.g., widths W = 64, 128, 256), 328
and apply RG-Attn independently at each level to fuse cam- 329
era semantics into the BEV space per agent as Eq. (6) to 330
get F fus-bev

i+
∑n

k=1 ik,(s), where s indexes the resolution level. 331

The resulting fused features are then passed to perform 332
occupancy-aware alignment and weighted aggregation at 333
each scale, followed by upsampling and concatenation to 334
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produce the final fused BEV representation. By embedding335
RG-Attn throughout the entire pyramid, the integrated ar-336
chitecture fully leverages multi-scale camera semantics to337
enrich BEV features and maximize detection performance.338

4. EXPERIMENTS AND RESULTS339

4.1. Datasets340

To evaluate the effectiveness of our multi-modal multi-341
agent framework, we conduct experiments on the DAIR-342
V2X and OPV2V datasets. Our model design is primar-343
ily guided by the DAIR-V2X dataset, which presents real-344
world cooperative perception challenges with data collected345
in urban Beijing. DAIR-V2X contains 9K frames, each346
consisting of raw sensor data from a vehicle agent and347
a roadside unit (RSU), each equipped with a single cam-348
era and a LiDAR of differing specifications. In contrast,349
the OPV2V dataset, simulated in CARLA, includes over350
11K frames across diverse traffic scenarios. Each OPV2V351
frame involves 2 to 7 collaborating vehicles, each uniformly352
equipped with one LiDAR and four cameras.353

Across both datasets, we evaluate three agent config-354
urations: LiDAR-only, camera-only, and LiDAR–camera355
both. For OPV2V, camera-equipped agents utilize all356
four 800×600 resolution cameras, while LiDAR-equipped357
agents use the default 64-beam 360° LiDAR. In DAIR-358
V2X, both vehicle and RSU provide 1920×1080 camera in-359
put; however, notable differences in camera height and in-360
trinsic parameters exist between the two. The LiDAR con-361
figurations also differ: vehicles use a 40-beam 360° LiDAR,362
while RSUs employ a 300-beam LiDAR with a 100° FOV.363

4.2. Settings364

Implementation details: We adopt unified encoders for365
raw data processing: PointPillar [8] for LiDAR point cloud366
and the first five sequential layers of ResNet101 for cam-367
era images. The LiDAR BEV map is down-sampled 2×368
and further reduced to a shape of [64, 128, 256] using369
3 consecutive ConvNeXt [23] blocks, with a grid size370
of [0.4m, 0.4m]. The feature matrix for each camera371
sensor after the encoder is in shape [8, 144, 256], as372
we fix the target channel, width and height of the out-373
put to deal with the different resolution specification in374
two datasets. Multi-head attention is configured with cor-375
responding learnable embeddings, attention heads of 8,376
and a dropout rate of 0.1. The pyramid fusion conducts377
multi-level fusion with widths (i.e., the last dimension of378
BEV map feature shape) at 256, 128 and 64 consequently.379
For fair comparison with existing approaches, the detec-380
tion range in both training and evaluation is set to x ∈381
[−102.4m, +102.4m], y ∈ [−51.2m, +51.2m]. A Non-382
Maximum Suppression (NMS)-based object detection head383
is added, which processes the outputs of the classification,384

regression, and orientation predictions to generate final de- 385
tections. Average precision (AP) is then calculated at dif- 386
ferent intersection-over-union (IoU) thresholds. 387

Training configurations: Three loss functions—for 388
classification, regression, and orientation—are used, with 389
the foreground map incorporated into the loss calculation. 390
We adopt the Adam optimizer with an initial learning rate 391
of 0.002, which is reduced by a factor of 0.1 from epoch 15 392
to 25 for DAIR-V2X (30 epochs in total) and from epoch 35 393
to 40 for OPV2V (40 epochs in total). Training on a single 394
NVIDIA RTX 6000 Ada takes approximately 6 hours for 395
DAIR-V2X and 36 hours for OPV2V. 396

4.3. Quantitative & Visualization Results 397

As shown in Tab. 1, we compare our approach with the best 398
performances of existing methods [11, 16, 24–27, 34], each 399
evaluated under its optimal modality configuration as re- 400
ported in their original papers. For a fair and consistent 401
comparison, we re-implemented or reproduced all listed re- 402
sults under identical experimental settings. The number of 403
collaborating agents is fixed at 2 for DAIR-V2X and up to 404
5 for OPV2V, with the same detection range applied. A key 405
distinction is that most compared methods (except BM2CP) 406
achieve their best results using only LiDAR data from all 407
agents, as documented in their papers. 408

We also evaluate our methods under varying numbers 409
and combinations of agents and modalities on both datasets, 410
as shown in Tab. 2, where “+” separates two agents, “L” 411
denotes LiDAR-only, “C” camera-only, and “LC” LiDAR- 412
camera-both. All models are trained only once with full 413
multi-modal multi-agent setting (i,e,. LC+LC), and directly 414
used for inference in all other configurations. The multi- 415
modal results of HEAL and CoBEVT marked with “*” in 416
Tab. 2, are achieved by their proposed BEV fusion modules 417
to fuse LiDAR-BEVs and camera-BEVs (with estimated 418
depth from camera data) from participating agents. 419

Notably, CoBEVT and HEAL show performance drops 420
when BEVs generated from camera data are included, as 421
seen in the AP30 column of Tab. 1 and the LC+LC col- 422
umn under DAIR-V2X (AP30) in Tab. 2, with decreases 423
of 5.6% and 19.9%, respectively. A similar degradation 424
appears on OPV2V, where HEAL and CoBEVT drop by 425
6.8% and 27.1% in AP50, as shown in Fig. 6 and the right 426
side of Tab. 2. In contrast, our approach fully exploits the 427
complementary strengths of camera data by fusing its se- 428
mantics directly into the robust LiDAR-BEV, rather than 429
generating a separate camera-BEV. This advantage is es- 430
pecially clear when comparing HEAL with our method, 431
as our cross-modal fusion extends HEAL’s LiDAR-only 432
backbone. Moreover, our framework significantly outper- 433
forms BM2CP—another method designed for multi-modal 434
input—highlighting the strength of our design. 435

To assess the impact of the number of participating 436
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Dataset DAIR-V2X OPV2V
Method Modal AP30 AP50 AP50 AP70

AttFusion L 0.738 0.673 0.878 0.751
DiscoNet L 0.746 0.685 0.882 0.737
V2XViT L 0.785 0.521 0.917 0.790
CoBEVT L 0.787 0.692 0.935 0.851
BM2CP LC 0.802 0.743 0.935 0.896
HM-ViT L 0.818 0.761 0.950 0.873
HEAL L 0.832 0.790 0.963 0.926

CoS-CoCo LC 0.854 0.811 0.965 0.937
PTP LC 0.862 0.817 0.970 0.945

PRGAF LC 0.869 0.823 0.972 0.946

Table 1. Best performances of existing cooperative perception
methods and our proposed approaches across different datasets,
with identical modality setup per agent in each method.

Dataset DAIR-V2X (AP30) OPV2V (AP50)
Modality LC LC+C LC+L LC+LC LC LC+C LC+L LC+LC

CoBEVT* 0.146 0.553 0.589 0.588 0.472 0.604 0.647 0.643
HEAL* 0.237 0.574 0.692 0.776 0.581 0.636 0.733 0.854
BM2CP 0.639 0.645 0.793 0.802 0.679 0.687 0.899 0.914

PTP 0.707 / 0.743 0.862 0.820 / 0.875 0.955
PRGAF 0.711 / 0.842 0.869 0.825 / 0.941 0.957

CoS-CoCo 0.705 0.712 0.848 0.854 0.821 0.837 0.946 0.952

Table 2. The performance comparison regarding the combination
of agents number and modality setting in different approaches.
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Figure 6. Comparison of AP50 scores on OPV2V with different
maximum agent counts across our methods and key baselines.

agents in cooperative perception on our proposed meth-437
ods, we conduct a series of controlled experiments on the438
OPV2V dataset. As illustrated in Fig. 6, these experiments439
systematically evaluate how performance scales with vary-440
ing numbers of collaborating agents, providing insights into441
the effectiveness and adaptability of our approach under dif-442
ferent cooperation levels.443

Additionally, we evaluate the impact of pose errors, as444
shown in Fig. 7, by adding Gaussian noise to the otherwise445
calibrated pose data (position and rotation) of DAIR-V2X,446
which is crucial for computing the transformation matrix447
that aligns features. Results show that our methods consis-448
tently outperform others under varying levels of pose noise.449
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Figure 7. Comparison of AP30 scores on DAIR-V2X with pose
noise: N (0, σ2

p) for x, y and N (0, σ2
r) for yaw angle.

The communication budget for transmitting intermedi- 450
ate BEV feature in PTP is 4 MB per agent per frame (un- 451
compressed), but can be reduced to under 2 MB on aver- 452
age (47.56% compression) using lossless methods like zlib, 453
thanks to BEV feature sparsity. CoS-CoCo introduces a 454
flexible load by adding ∼0.2 MB of uncompressed cam- 455
era data per agent to the base 4 MB LiDAR-BEV, support- 456
ing LiDAR-only (4 MB), camera-only (0.2 MB), or both 457
modalities (4.2 MB, same as PRGAF) to adapt to differ- 458
ent bandwidth constraints. To reduce this substantial ∼4 459
MB per-frame budget, an autoencoder can compress fea- 460
tures by shrinking channel dimensions for all three struc- 461
tures; tests show that a 32-fold compression (e.g., down to 462
0.125 MB for PTP) results in at most a 0.5% AP30 drop 463
on DAIR-V2X, with under 2 ms extra computation. The 464
proposed RG-Attn module introduces minimal latency, re- 465
quiring less than 4 ms per cross-modal fusion. The total 466
inference time—from raw input to final fused BEV—is ap- 467
proximately 40 ms for PTP and CoS-CoCo, and 65 ms for 468
PRGAF (measured in a two-agent cooperative setting). 469

In addition to quantitative results, we provide visual- 470
izations in Fig. 8 to demonstrate the effectiveness of RG- 471
Attn. Specifically, Fig. 8(a) illustrates a representative sce- 472
nario where cross-modal fusion helps resolve challenging 473
regions—areas where LiDAR-only BEV fails to support 474
correct detection, but RG-Attn enhanced BEV succeeds. 475
Fig. 8(b–c) further compare heatmaps from selected BEV 476
feature map channels (extracted from the classification head 477
and used as input to the NMS-based detection head) be- 478
tween the RG-Attn fused and LiDAR-only settings. 479

4.4. Performance Analysis 480

Fusion Effectiveness: As shown in Tab. 1, all three RG- 481
Attn-enabled architectures outperform existing methods, 482
benefiting from the module’s effective cross-modal fusion 483
capabilities. PRGAF achieves the highest accuracy on 484
both benchmarks, surpassing the previous SOTA method 485
HEAL by +3.7% AP30 on DAIR-V2X and +2.0% AP70 486
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Figure 8. Visualization of RG-Attn’s effectiveness in a representa-
tive scenario.

on OPV2V, by fully exploiting the potential of RG-Attn in a487
pyramid manner. This performance advantage remains con-488
sistent across varying numbers of participating agents and489
levels of pose noise, as illustrated in Fig. 6 and Fig. 7. The490

gain stems from the intra-agent fusion stage, where camera 491
semantics are effectively “glued” onto the intact, sampled 492
LiDAR-derived BEV map—yielding enriched and coher- 493
ent representations. In contrast, during inter-agent fusion 494
in CoS-CoCo, aligning the BEV map with a remote agent’s 495
camera FOV can produce edge cases where the projected 496
area reaches the LiDAR BEV boundary or lacks valid over- 497
lap, leading to fragmented, distorted, or missing semantics 498
and reduced fusion effectiveness. 499

Generalization: As shown in Tab. 2, CoS-CoCo demon- 500
strates superior robustness and adaptability under hetero- 501
geneous sensor settings. Without any additional training 502
or fine-tuning, it maintains competitive performance when 503
integrating agents with different modality configurations, 504
highlighting its suitability for real-world deployment. 505

Ablation Component: We evaluate different positional 506
encoding strategies within RG-Attn in Tab. 3. Removing 507
positional encoding yields the poorest performance, though 508
it still outperforms the no-cross-modal baseline. In con- 509
trast, both learnable encoding and depth-height hybrid en- 510
coding achieve comparable results under the PTP setting. 511
In the hybrid scheme, the LiDAR BEV positional encod- 512
ing corresponds to the radial depth of the sampled grid (via 513
the GridSectorSample process), while the camera-side posi- 514
tional encoding reflects the vertical position (height) of se- 515
mantics within the camera’s 2D feature column. The learn- 516
able encoding consists of two shared tensors, independently 517
applied to the LiDAR BEV and camera feature columns 518
prior to the column-wise attention operation. 519

Dataset DAIR-V2X
Method AP30 AP50 AP70

No Cross-Modal attention 0.832 0.790 0.624
No positional encoding 0.855 0.812 0.634

Depth-height hybrid encoding 0.861 0.817 0.645
Learnable positional encoding 0.862 0.823 0.642

Table 3. Comparison of different positional encodings and a no
cross-modal baseline for RG-Attn in the PTP architecture setting.

5. CONCLUSION AND FUTURE WORK 520

This work marks an initial step toward comprehensive 521
multi-modal multi-agent fusion for cooperative perception, 522
with clear opportunities for future improvements. The RG- 523
Attn module can be further refined for improved cross- 524
modal alignment under noisy sensing, and the framework 525
could integrate the complementary strengths of all three 526
structures to balance flexibility, accuracy, and efficiency. 527
In summary, we demonstrate that our designs achieve high 528
perception accuracy and computational efficiency in coop- 529
erative settings. We hope this work fosters continued explo- 530
ration and discussion in the field of multi-modal multi-agent 531
cooperative perception. 532

8



ICCV
#*****

ICCV
#*****

ICCV 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References533

[1] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,534
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-535
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-536
modal dataset for autonomous driving. In Proceedings of537
the IEEE/CVF Conference on Computer Vision and Pattern538
Recognition, pages 11621–11631, 2020. 3539

[2] R. Qi Charles, Hao Su, Mo Kaichun, and Leonidas J. Guibas.540
Pointnet: Deep learning on point sets for 3d classification541
and segmentation. In Proceedings of the IEEE/CVF Con-542
ference on Computer Vision and Pattern Recognition, pages543
77–85, 2017. 3544

[3] Qi Chen, Sihai Tang, Qing Yang, and Song Fu. Cooper:545
Cooperative perception for connected autonomous vehicles546
based on 3d point clouds. In IEEE International Conference547
on Distributed Computing Systems, pages 514–524, 2019. 3548

[4] Yilun Chen, Zhiding Yu, Yukang Chen, Shiyi Lan, Anima549
Anandkumar, Jiaya Jia, and Jose M. Alvarez. Focalformer3d550
: Focusing on hard instance for 3d object detection. In551
Proceedings of the IEEE/CVF International Conference on552
Computer Vision, pages 8360–8371, 2023. 3553

[5] Jiaxun Cui, Hang Qiu, Dian Chen, Peter Stone, and Yuke554
Zhu. Coopernaut: End-to-end driving with cooperative555
perception for networked vehicles. In Proceedings of the556
IEEE/CVF Conference on Computer Vision and Pattern557
Recognition, pages 17252–17262, 2022. 3558

[6] James Gunn, Zygmunt Lenyk, Anuj Sharma, Andrea Donati,559
Alexandru Buburuzan, John Redford, and Romain Mueller.560
Lift-attend-splat: Bird’s-eye-view camera-lidar fusion using561
transformers. In Proceedings of the IEEE/CVF Conference562
on Computer Vision and Pattern Recognition, pages 4526–563
4536, 2024. 3564

[7] Yue Hu, Shaoheng Fang, Zixing Lei, Yiqi Zhong, and Si-565
heng Chen. Where2comm: Communication-efficient collab-566
orative perception via spatial confidence maps. Advances567
in neural information processing systems, 35:4874–4886,568
2022. 3569

[8] Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,570
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders571
for object detection from point clouds. In Proceedings of572
the IEEE/CVF Conference on Computer Vision and Pattern573
Recognition, pages 12689–12697, 2019. 6574

[9] Lantao Li, Yujie Cheng, Chen Sun, and Wenqi Zhang.575
Icop: Image-based cooperative perception for end-to-end au-576
tonomous driving. In IEEE Intelligent Vehicles Symposium,577
pages 2367–2374, 2024. 3578

[10] Lantao Li, Wenqi Zhang, Xiaoxue Wang, Tao Cui, and Chen579
Sun. Nlos dies twice: Challenges and solutions of v2x for580
cooperative perception. IEEE Open Journal of Intelligent581
Transportation Systems, 5:774–782, 2024. 3582

[11] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen583
Feng, and Wenjun Zhang. Learning distilled collaboration584
graph for multi-agent perception. Advances in Neural Infor-585
mation Processing Systems, 34:29541–29552, 2021. 6586

[12] Chenguang Liu, Yunfei Chen, Jianjun Chen, Ryan Payton,587
Michael Riley, and Shuang-Hua Yang. Cooperative percep-588

tion with learning-based v2v communications. IEEE Wire- 589
less Communications Letters, 12(11):1831–1835, 2023. 3 590

[13] Yen-Cheng Liu, Junjiao Tian, Chih-Yao Ma, Nathan Glaser, 591
Chia-Wen Kuo, and Zsolt Kira. Who2com: Collabora- 592
tive perception via learnable handshake communication. In 593
IEEE International Conference on Robotics and Automation, 594
pages 6876–6883, 2020. 3 595

[14] Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang, 596
Huizi Mao, Daniela L Rus, and Song Han. Bevfusion: Multi- 597
task multi-sensor fusion with unified bird’s-eye view repre- 598
sentation. In IEEE International Conference on Robotics and 599
Automation, pages 2774–2781, 2023. 3 600

[15] Yifan Lu, Quanhao Li, Baoan Liu, Mehrdad Dianati, Chen 601
Feng, Siheng Chen, and Yanfeng Wang. Robust collaborative 602
3d object detection in presence of pose errors. In IEEE In- 603
ternational Conference on Robotics and Automation, pages 604
4812–4818, 2023. 3 605

[16] Yifan Lu, Yue Hu, Yiqi Zhong, Dequan Wang, Yanfeng 606
Wang, and Siheng Chen. An extensible framework for 607
open heterogeneous collaborative perception. arXiv preprint 608
arXiv:2401.13964, 2024. 2, 3, 4, 6 609

[17] Guiyang Luo, Chongzhang Shao, Nan Cheng, Haibo Zhou, 610
Hui Zhang, Quan Yuan, and Jinglin Li. Edgecooper: 611
Network-aware cooperative lidar perception for enhanced 612
vehicular awareness. IEEE Journal on Selected Areas in 613
Communications, 42(1):207–222, 2024. 3 614

[18] Jonah Philion and Sanja Fidler. Lift, splat, shoot: Encoding 615
images from arbitrary camera rigs by implicitly unprojecting 616
to 3d. In European Conference on Computer Vision, pages 617
194–210. Springer, 2020. 3 618

[19] Zaydoun Yahya Rawashdeh and Zheng Wang. Collaborative 619
automated driving: A machine learning-based method to en- 620
hance the accuracy of shared information. In IEEE Inter- 621
national Conference on Intelligent Transportation Systems, 622
pages 3961–3966, 2018. 3 623

[20] Rui Song, Runsheng Xu, Andreas Festag, Jiaqi Ma, and 624
Alois Knoll. Fedbevt: Federated learning bird’s eye view 625
perception transformer in road traffic systems. IEEE Trans- 626
actions on Intelligent Vehicles, 9(1):958–969, 2024. 3 627

[21] Zhiying Song, Tenghui Xie, Hailiang Zhang, Jiaxin Liu, Fuxi 628
Wen, and Jun Li. A spatial calibration method for robust 629
cooperative perception. IEEE Robotics and Automation Let- 630
ters, 9(5):4011–4018, 2024. 3 631

[22] Sourabh Vora, Alex H. Lang, Bassam Helou, and Oscar Bei- 632
jbom. Pointpainting: Sequential fusion for 3d object detec- 633
tion. In Proceedings of the IEEE/CVF Conference on Com- 634
puter Vision and Pattern Recognition, pages 4603–4611, 635
2020. 3 636

[23] Hao Xiang, Runsheng Xu, and Jiaqi Ma. Hm-vit: Hetero- 637
modal vehicle-to-vehicle cooperative perception with vision 638
transformer. In Proceedings of the IEEE/CVF Conference on 639
Computer Vision and Pattern Recognition, pages 284–295, 640
2023. 6 641

[24] Hao Xiang, Runsheng Xu, and Jiaqi Ma. Hm-vit: Hetero- 642
modal vehicle-to-vehicle cooperative perception with vision 643
transformer. In Proceedings of the IEEE/CVF International 644
Conference on Computer Vision, pages 284–295, 2023. 2, 3, 645
6 646

9



ICCV
#*****

ICCV
#*****

ICCV 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[25] Runsheng Xu, Zhengzhong Tu, Hao Xiang, Wei Shao, Bolei647
Zhou, and Jiaqi Ma. Cobevt: Cooperative bird’s eye view648
semantic segmentation with sparse transformers, 2022. 3649

[26] Runsheng Xu, Hao Xiang, Zhengzhong Tu, Xin Xia, Ming-650
Hsuan Yang, and Jiaqi Ma. V2x-vit: Vehicle-to-everything651
cooperative perception with vision transformer. In European652
Conference on Computer Vision, pages 107–124, 2022.653

[27] Runsheng Xu, Hao Xiang, Xin Xia, Xu Han, Jinlong Li, and654
Jiaqi Ma. Opv2v: An open benchmark dataset and fusion655
pipeline for perception with vehicle-to-vehicle communica-656
tion. In IEEE International Conference on Robotics and Au-657
tomation, pages 2583–2589, 2022. 3, 6658

[28] Runsheng Xu et al. V2v4real: A real-world large-scale659
dataset for vehicle-to-vehicle cooperative perception. In Pro-660
ceedings of the IEEE/CVF Conference on Computer Vision661
and Pattern Recognition, pages 13712–13722, 2023. 3662

[29] Chenyu Yang et al. Bevformer v2: Adapting modern im-663
age backbones to bird’s-eye-view recognition via perspective664
supervision. In Proceedings of the IEEE/CVF Conference665
on Computer Vision and Pattern Recognition, pages 17830–666
17839, 2023. 3667

[30] Haibao Yu et al. Dair-v2x: A large-scale dataset for vehicle-668
infrastructure cooperative 3d object detection. In Proceed-669
ings of the IEEE/CVF Conference on Computer Vision and670
Pattern Recognition, pages 21361–21370, 2022. 3671

[31] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi,672
Zi-Hang Jiang, Francis EH Tay, Jiashi Feng, and Shuicheng673
Yan. Tokens-to-token vit: Training vision transformers from674
scratch on imagenet. In Proceedings of the IEEE/CVF In-675
ternational Conference on Computer Vision, pages 558–567,676
2021. 3677

[32] Wang Yue, Vitor Guizilini, Campagnolo, Tianyuan Zhang,678
Yilun Wang, Hang Zhao, and Justin Solomon. Detr3d:679
3d object detection from multi-view images via 3d-to-2d680
queries. In Proceedings of the Conference on Robot Learn-681
ing, pages 180–191, 2022. 3682

[33] Hongcheng Zhang, Liu Liang, Pengxin Zeng, Xiao Song,683
and Zhe Wang. Sparselif: High-performance sparse lidar-684
camera fusion for 3d object detection. In European Confer-685
ence on Computer Vision, pages 109–128, 2024. 3686

[34] Binyu Zhao, Wei Zhang, and Zhaonian Zou. Bm2cp: Effi-687
cient collaborative perception with lidar-camera modalities.688
In Conference on Robot Learning, pages 1022–1035. PMLR,689
2023. 3, 6690

[35] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and691
Vladlen Koltun. Point transformer. In Proceedings of the692
IEEE/CVF International Conference on Computer Vision,693
pages 16259–16268, 2021. 3694

[36] Walter Zimmer, Gerhard Arya Wardana, Suren Sritharan,695
Xingcheng Zhou, Rui Song, and Alois C Knoll. Tum-696
traf v2x cooperative perception dataset. In Proceedings of697
the IEEE/CVF Conference on Computer Vision and Pattern698
Recognition, pages 22668–22677, 2024. 3699

[37] Zhuofan Zong, Dongzhi Jiang, Guanglu Song, Zeyue Xue,700
Jingyong Su, Hongsheng Li, and Yu Liu. Temporal enhanced701
training of multi-view 3d object detector via historical object702
prediction. In Proceedings of the IEEE/CVF International703
Conference on Computer Vision, pages 3758–3767, 2023. 3704

10


	Introduction
	RELATED WORKS
	Single-Agent Perception
	Multi-Agent Cooperative Perception

	METHODOLOGY
	Radian-Glue-Attention (RG-Attn)
	RG-Attn enabled Cooperative Perception
	Paint-To-Puzzle (PTP)
	Co-Sketching-Co-Coloring (CoS-CoCo)
	Pyramid-RG-Attn Fusion (PRGAF)


	EXPERIMENTS AND RESULTS
	Datasets
	Settings
	Quantitative & Visualization Results
	Performance Analysis

	CONCLUSION AND FUTURE WORK

