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Abstract

Extracting narrow roads from high-resolution remote sens-001
ing imagery remains a significant challenge due to their002
limited width, fragmented topology, and frequent occlu-003
sions. To address these issues, we propose D3FNet, a Di-004
lated Dual-Stream Differential Attention Fusion Network005
designed for fine-grained road structure segmentation in re-006
mote perception systems. Built upon the encoder–decoder007
backbone of D-LinkNet, D3FNet introduces three key in-008
novations: (1) a Differential Attention Dilation Extraction009
(DADE) module that enhances subtle road features while010
suppressing background noise at the bottleneck; (2) a Dual-011
stream Decoding Fusion Mechanism (DDFM) that inte-012
grates original and attention-modulated features to bal-013
ance spatial precision with semantic context; and (3) a014
multi-scale dilation strategy (rates 1, 3, 5, 9) that miti-015
gates gridding artifacts and improves continuity in narrow016
road prediction. Unlike conventional models that overfit017
to generic road widths, D3FNet specifically targets fine-018
grained, occluded, and low-contrast road segments. Exten-019
sive experiments on the DeepGlobe and CHN6-CUG bench-020
marks show that D3FNet achieves superior IoU and recall021
on challenging road regions, outperforming state-of-the-art022
baselines. Ablation studies further verify the complemen-023
tary synergy of attention-guided encoding and dual-path024
decoding. These results confirm D3FNet as a robust so-025
lution for fine-grained narrow road extraction in complex026
remote and cooperative perception scenarios.027

1. Introduction028

In cooperative autonomous driving systems, remote per-029
ception is increasingly recognized as a critical component030
for global scene understanding, high-definition (HD) map031
generation, and robust navigation in unstructured environ-032
ments. While most V2X-based systems rely on vehicle-033
mounted and roadside sensors, aerial and satellite im-034
agery extends perception beyond local line-of-sight, offer-035

ing global context for route-level decision-making. In sce- 036
narios where ground sensors are limited—such as rural ar- 037
eas, disaster zones, or GPS-denied environments—remote 038
sensing imagery provides vital input for collaborative plan- 039
ning and hazard-aware routing [12]. 040

Among remote perception tasks, fine-grained road struc- 041
ture extraction from high-resolution satellite imagery has 042
become particularly important. Accurate road segmenta- 043
tion supports topological map construction, enables effi- 044
cient routing, and ensures safety-critical decision-making 045
in autonomous systems [13]. However, this task remains 046
highly challenging due to multiple factors: (1) the inher- 047
ently narrow width of roads relative to background objects, 048
(2) frequent topological disconnections caused by occlu- 049
sions (e.g., trees, buildings, shadows), and (3) low contrast 050
and high intra-class variability across regions, seasons, and 051
sensors. These challenges significantly degrade the perfor- 052
mance of conventional segmentation models. 053

Existing methods, such as ResUNet [26] and D- 054
LinkNet [28], have made progress by leveraging en- 055
coder–decoder architectures and skip connections. How- 056
ever, they often exhibit weak localization for thin structures 057
and are prone to losing continuity under occlusion or visual 058
ambiguity. Moreover, many of these models are optimized 059
for wide, prominent roads and fail to generalize to finer 060
structures essential for real-time planning and safe naviga- 061
tion in cooperative driving systems. 062

To address these limitations, we propose D3FNet—a Di- 063
lated Dual-Stream Differential Attention Fusion Network 064
designed specifically for fine-grained road extraction from 065
remote sensing imagery. Built upon the D-LinkNet back- 066
bone, D3FNet introduces three key innovations: 067

• A Differential Attention Dilation Extraction (DADE) 068
module, which enhances subtle road features while effec- 069
tively suppressing cluttered backgrounds; 070

• A Dual-stream Decoding Fusion Mechanism (DDFM) 071
that fuses original and attention-refined features to jointly 072
capture semantic consistency and spatial localization; 073

• An optimized multi-scale dilation strategy to improve 074
contextual representation while avoiding gridding arti- 075
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facts.076

We evaluate D3FNet on two challenging077
datasets—DeepGlobe [7] and CHN6-CUG [30]—covering078
diverse geographies and road morphologies. Our model079
consistently outperforms state-of-the-art baselines in terms080
of IoU, Recall, and F1-score, especially on narrow and081
fragmented road segments. These results highlight the082
effectiveness of D3FNet for remote road perception tasks083
that directly support cooperative autonomous navigation.084

Our main contributions are summarized as follows:085
• We propose D3FNet, a novel architecture for narrow086

road extraction, combining differential attention [24] and087
dual-stream decoding into the D-LinkNet [28] frame-088
work.089

• We design a DADE module and DDFM structure that im-090
prove feature discrimination and preserve spatial continu-091
ity for narrow, occluded roads.092

• We demonstrate state-of-the-art performance on two093
benchmark road extraction datasets, validating the effec-094
tiveness and generalization ability of our method for co-095
operative driving scenarios.096
The remainder of this paper is organized as follows. Sec-097

tion 2 reviews related work on road extraction from remote098
sensing imagery. Section 3 details the proposed D3FNet099
architecture, including the DADE module and dual-stream100
decoding fusion. Section 4 presents the experimental setup101
and evaluates performance on benchmark datasets. Finally,102
Section 5 concludes the paper and discusses potential future103
research directions.104

2. Related Work105

2.1. Road Extraction from Remote Sensing Imagery106

Road extraction is a fundamental task in remote sensing im-107
age analysis with wide applications in intelligent transporta-108
tion, urban planning, and disaster response [13, 17]. High-109
precision road networks support the construction of detailed110
maps and provide essential information for autonomous111
driving and emergency management systems. However, ex-112
tracting roads from remote sensing imagery faces signifi-113
cant challenges, including the narrow width of roads com-114
pared to background objects, frequent topological discon-115
tinuities caused by occlusions such as trees, buildings, and116
shadows, and low contrast with high intra-class variability117
across different regions, seasons, and sensors [15].118

Classic approaches for road extraction often rely on deep119
learning-based semantic segmentation networks, such as U-120
Net [18] and its improved variant ResUNet [26], which uti-121
lize encoder-decoder architectures with skip connections to122
fuse multi-scale features and enhance boundary localiza-123
tion. D-LinkNet [28] builds upon this by incorporating di-124
lated convolutions to expand the receptive field, effectively125
capturing long-range dependencies. DeepLabV3+ [5] fur-126

ther improves semantic feature extraction through Atrous 127
Spatial Pyramid Pooling (ASPP), becoming a strong base- 128
line for road extraction tasks in remote sensing. 129

More recently, advanced models have emerged to ad- 130
dress the complex topological and occlusion challenges in 131
road extraction. For instance, using a Swin Transformer- 132
based UNet architecture [9], the model effectively captures 133
both global and local features of road images through self- 134
attention mechanisms, thereby improving the accuracy and 135
structural connectivity of road extraction. Graph neural 136
network (GNN)-based methods [3] explicitly model road 137
nodes and edges to optimize the completeness and struc- 138
tural integrity of road networks. Additionally, multi-scale 139
and multi-task learning strategies [14] have been widely 140
adopted to simultaneously improve fine boundary extraction 141
and semantic classification of roads. In particular, several 142
recent works have focused specifically on the challenges 143
of narrow road extraction. SWGE-Net and MSIF-Net [27] 144
introduce edge-guided and multi-scale integration mod- 145
ules, respectively, to better capture subtle features of thin 146
road structures in high-resolution imagery. These meth- 147
ods demonstrate improved performance on narrow roads but 148
still suffer from limitations in maintaining structural conti- 149
nuity under severe occlusion or ambiguous visual contexts. 150

Despite these advances, most existing methods focus pri- 151
marily on wide and continuous main roads, and their perfor- 152
mance on narrow, fragmented, and heavily occluded road 153
segments remains limited [1, 13]. In practical scenarios 154
where image resolution is limited and environments are 155
highly variable, these models often fail to preserve road 156
continuity and integrity, which restricts their applicability 157
in high-precision tasks such as autonomous navigation and 158
disaster rescue. Therefore, there is an urgent need for inno- 159
vative approaches tailored to narrow road extraction under 160
challenging remote sensing conditions. 161

2.2. Attention mechanisms and Feature Fusion for 162
Narrow Road Semantic Segmentation 163

Narrow road structures in remote sensing images typically 164
appear as thin and elongated objects with low contrast, 165
making them highly susceptible to being overwhelmed by 166
complex background information. Furthermore, occlusions 167
caused by buildings, vegetation, and shadows often lead to 168
topological discontinuities in road extraction [23]. These 169
challenges render the effective fusion of spatial and seman- 170
tic information critical for precise segmentation. 171

Attention mechanisms have been shown to significantly 172
enhance the continuity and discriminability of narrow road 173
extraction by guiding the network to focus on key regions 174
and suppress background noise. Channel-wise attention 175
mechanisms, such as SE-Net [11] and CBAM [21], im- 176
prove the semantic representation by modeling the impor- 177
tance of feature channels but are limited in preserving spa- 178
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tial details. Spatial attention and dual attention mechanisms,179
exemplified by DANet [8], simultaneously leverage spa-180
tial and channel information to substantially improve struc-181
tural continuity, making them well-suited for fine-grained182
and occluded road detection tasks. Notably, differential at-183
tention mechanisms [24] compare features between adja-184
cent encoding layers to effectively capture subtle and frag-185
mented road segments, thereby enhancing sensitivity to186
low-contrast and occluded regions.187

Regarding feature fusion between high-resolution shal-188
low spatial features and deep semantic features, we design189
a Dual-stream Decoder with Fusion Mechanism (DDFM).190
This module performs parallel processing and fusion of191
shallow and deep features, using attention-guided modu-192
lation of deep semantic features by shallow spatial fea-193
tures. Such design enhances boundary localization accuracy194
while maintaining semantic consistency and topological in-195
tegrity [19, 22]. To address the gridding artifacts common196
in dilated convolution-based multi-scale modeling, we pro-197
pose the Differential Attention Dilation Extraction (DADE)198
module. DADE employs a carefully selected set of dila-199
tion rates {1, 3, 5, 9} to effectively cover diverse receptive200
field scales and mitigate uneven sampling effects [5, 25].201
ombined with differential attention, the DADE module dy-202
namically emphasizes local structural variations, boosting203
recognition of fragmented and low-contrast roads and sig-204
nificantly improving the continuity and accuracy of narrow205
road extraction.206

In summary, current research incorporating differential207
attention mechanisms and dual-stream fusion strategies, to-208
gether with a well-designed multi-scale dilation strategy, ef-209
fectively overcomes limitations in detail preservation, oc-210
clusion recovery, and scale variation in complex remote211
sensing imagery, thus providing robust support for accurate212
narrow road semantic segmentation.213

3. Methodology214

3.1. Overview of D3FNet Architecture215

D3FNet is a novel architecture designed for narrow road ex-216
traction, introducing a differential attention mechanism [24]217
to enhance feature discrimination. As shown in Figure 1,218
D3FNet builds upon the encoder-decoder structure of D-219
LinkNet [28]. The input satellite image is first encoded by a220
pre-trained ResNet34 backbone [10], which reduces spatial221
resolution while extracting multi-level semantic features.222
These features are then processed by the Differential At-223
tention Dilation Extraction (DADE) module in the network224
center, which integrates four dilated convolutions with dila-225
tion rates of 1, 3, 5, and 9 to capture multi-scale structures.226
Each dilated convolutional layer is followed by a multi-head227
differential attention module that suppresses background228
noise through the subtraction of two independently com-229

puted attention maps, thereby enhancing the task-relevant 230
features. To prevent gradient interference between dilation 231
and attention during training, a Dual-stream Decoding Fu- 232
sion Mechanism (DDFM) is adopted. The DADE output 233
is split into two streams: a structural stream enhanced by 234
encoder skip connections and an attention stream that fo- 235
cuses on global semantics. Both streams are decoded in- 236
dependently through up-sampling blocks and then fused to 237
generate the final high-resolution binary segmentation map 238
indicating road areas. 239

3.2. Differential Attention Dilation Extraction 240
(DADE) Module 241

Inspired by the central module of D-LinkNet, we design the 242
Differential Attention Dilation Extraction (DADE) module 243
(Fig. 2), which consists of four cascaded dilated convolu- 244
tional layers, each followed by a parallel multi-head dif- 245
ferential attention mechanism to enhance feature discrim- 246
inability. The differential attention mechanism, derived 247
from the Differential Transformer [24] architecture, is an 248
improved attention method aimed at reducing the excessive 249
focus on irrelevant context often seen in traditional trans- 250
formers. Its core idea is to suppress shared noisy activations 251
by computing the element-wise difference between two in- 252
dependently generated attention maps, thereby emphasizing 253
road-relevant features. 254

Specifically, the input is first processed by an embedding 255
layer, and the resulting feature representations are then split 256
into two independent sets of query (Q) and key (K) matri- 257
ces, which are used to compute the corresponding attention 258
weight matrices. These matrices are then combined through 259
a weighted subtraction to produce the differential attention 260
weights. The resulting weights are applied to the value (V) 261
matrix. 262

Specifically, the input features X ∈ Rb×n×c are pro- 263
jected into query, key, and value tensors Q,K, V ∈ 264
Rb×n×2d by linear projections with weight matrices 265
WQ,WK ,WV ∈ Rc×2d, respectively. 266

Then, Q and K are split along the last dimension into 267
two parts of size d as follows: 268

Q = XWQ, Q1, Q2 = split(Q), 269

K = XWK , K1,K2 = split(K), 270

V = XWV . 271

The attention maps are: 272

A1 = softmax
(
Q1K

T
1√

d

)
, A2 = softmax

(
Q2K

T
2√

d

)
. 273

The final differential attention output is computed as: 274

DiffAttention((X) = (A1 − λA2)V 275
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Figure 1. D3FNet architecture. Each green rectangular block represents a multi-channel feature map. In the encoder, D3FNet adopts
ResNet34 to extract hierarchical spatial features. The center part includes the Differential Attention and Dilated Extraction (DADE) mod-
ule, which consists of four cascaded dilated convolutional layers, each followed by a parallel multi-head differential attention mechanism.
In the decoder, based on LinkNet, a Dual-stream Decoding Fusion Mechanism (DDFM) is introduced, where the structural stream from
dilated convolutions receives skip connections from the encoder, while the attention stream focuses on semantic refinement without direct
encoder connections.

where λ ∈ [0, 1] controls the suppression strength. This dif-276
ferential mechanism effectively acts as a filter to cancel re-277
dundant or background attention and highlight road-related278
features.279

This mechanism, similar to a differential amplifier, can-280
cels common noise and enhances sensitivity to key features.281
Dilated convolutions capture multi-scale spatial structures,282
while differential attention suppresses background noise by283
computing differences between two independent attention284
maps. By integrating dilated convolutions and differential285
attention in parallel, the DADE module effectively captures286
multi-scale spatial context while suppressing background287
noise, resulting in enhanced semantic discrimination and288
finer road detail extraction.289

3.3. Dual-Stream Decoding Fusion Mechanism290
(DDFM)291

To mitigate gradient interference between dilated con-292
volutions and differential attention during backpropaga-293
tion—which may destabilize training and reduce model per-294
formance—this study introduces a Dual-stream Decoding295
Fusion Mechanism (DDFM) in the decoder. This mecha-296
nism integrates structural features and attention-enhanced297

Figure 2. Differential Attention Dilation Extraction Module.

contextual information extracted from the central module. 298
As shown in Fig. 3, the output is split into two parallel 299
streams: one carries structural features from dilated con- 300
volutions, and the other aggregates contextual cues refined 301
by multi-head differential attention. 302

During decoding, skip connections from the encoder 303
are added only to the structural stream to preserve fine- 304
grained spatial details, while the attention stream focuses 305
on global semantics, avoiding basic-level noise. To prevent 306
gradient entanglement between the structural and semantic 307
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Figure 3. Dual-stream Decoding Fusion Mechanism.

paths during training, we decouple them via DDFM. In pre-308
liminary experiments, directly merging the two paths led309
to unstable loss oscillations and degraded validation IoU,310
highlighting the necessity of stream decoupling. Fig. 3311
highlights this decoupling by removing skip-connections312
from the attention stream. Each decoding path contains313
four blocks that reduce channel dimensions via 1×1 con-314
volutions, followed by batch normalization, ReLU activa-315
tion, and transposed convolutions for upsampling and re-316
finement. The outputs of both streams are then concate-317
nated and passed through a fusion layer to produce a high-318
resolution road segmentation map. This dual-stream design319
effectively combines structural and contextual features, im-320
proving segmentation accuracy and robustness.321

3.4. Multi-Scale Dilation Strategy322

Dilated convolution enables multi-scale context aggregation323
by enlarging the receptive field without sacrificing spatial324
resolution or increasing parameter complexity. In the pro-325
posed Differential Attention Dilation Extraction (DADE)326
module, we employ four cascaded dilated convolutional327
layers. The original D-LinkNet uses dilation rates of (1,328
2, 4, 8), which can cause the ”gridding effect”—a sparse,329
checkerboard-like receptive field—due to shared factors330
among dilation rates. To mitigate this, the Hybrid Dilated331
Convolution (HDC) strategy [20] suggests selecting dilation332
rates without common factors. We compare three dilation333
rate configurations—(1,2,4,8), (1,3,5,9), and (1,3,5,10)—as334
illustrated in Fig. 4. In these visualizations, deeper colors335
represent higher coverage frequency. Both (1,3,5,9) and336
(1,3,5,10) reduce the gridding effect compared to the orig-337
inal setting. However, (1,3,5,9) demonstrates superior uni-338
formity and continuity in receptive field distribution. Based339
on these observations, we adopt (1,3,5,9) as the dilation340
configuration in our model. This design decision plays a341
pivotal role in enhancing the continuity of road predictions342
and complements the attention-guided encoding and dual-343
stream decoding processes described earlier.344

Figure 4. Comparison of Receptive Fields with Different Dilation
Rates: (a), (b), and (c) represent the final receptive fields with
different dilation rates of (1, 2, 4, 8), (1, 3, 5, 9), and (1, 3, 5, 10).

4. Experiments 345

We train our model on the DeepGlobe [7] and CHN6- 346
CUG [30] datasets and evaluate its performance using stan- 347
dard metrics, including Intersection over Union (IoU), Pre- 348
cision, Recall, and F1-score. The results are then compared 349
against our baseline model D-LinkNet [28], as well as sev- 350
eral recent road extraction approaches to validate the effec- 351
tiveness of D3FNet. 352

4.1. Datasets 353

We utilize two publicly available remote sensing datasets, 354
DeepGlobe [7] and CHN6-CUG [30], to train and evalu- 355
ate our model. The DeepGlobe dataset consists of high- 356
resolution (0.5 m/pixel) RGB satellite images from regions 357
in Thailand, Indonesia, and India. It contains 8,570 im- 358
ages of size 1024 × 1024 pixels, among which 6,226 have 359
pixel-level road annotations. In our experiments, 95% of 360
these annotated images are used for training, and the re- 361
maining 5% for testing. To further evaluate the generaliz- 362
ability of the model, we employ the CHN6-CUG dataset, 363
which also provides RGB satellite imagery at a resolution 364
of 0.5 m/pixel. This dataset comprises 4,511 images of size 365
512×512 pixels, collected from six cities across China and 366
covering diverse road types including urban streets, high- 367
ways, rural roads, and railways. We split this dataset into 368
80% for training and 20% for testing. 369

These datasets together offer a diverse set of road envi- 370
ronments and imaging conditions, enabling comprehensive 371
evaluation of the proposed method’s robustness and appli- 372
cability. 373

4.2. Evaluation Metrics 374

Road extraction is treated as a pixel-wise binary classifi- 375
cation task. Model performance is evaluated based on the 376
confusion matrix, which categorizes each pixel prediction 377
into true positives (TP), true negatives (TN), false positives 378
(FP), and false negatives (FN). We employ four commonly 379
used metrics to comprehensively assess the segmentation 380
quality: Intersection over Union (IoU), Precision, Recall, 381
and F1-score. Specifically, 382
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• IoU measures the overlap between predicted and ground383
truth road regions,384

• Precision indicates the proportion of correctly predicted385
road pixels among all pixels predicted as roads,386

• Recall reflects the model’s ability to identify actual road387
pixels, and388

• F1-score balances Precision and Recall, making it partic-389
ularly useful in cases of class imbalance.390

Together, these metrics provide a thorough understand-391
ing of the model’s accuracy, completeness, and robustness392
in road segmentation tasks.393

4.3. Implementation Details394

All experiments were conducted on a system running Win-395
dows 11, equipped with a 14th Gen Intel Core i7-14650HX396
processor, 16 GB of RAM, and an NVIDIA GeForce RTX397
4060 Laptop GPU with 8 GB of VRAM. The software en-398
vironment included Python 3.12.4, CUDA 12.5, and Py-399
Torch 2.4. We adopted the ReLU activation function and400
the Adam optimizer, using a learning rate of 1 × 10−4 and401
a batch size of 4 to balance training efficiency and mem-402
ory consumption. The model was independently trained403
and evaluated on the DeepGlobe [7] and CHN6-CUG [30]404
datasets to comprehensively assess its performance. Specif-405
ically, training on DeepGlobe was conducted for 50 epochs,406
while CHN6-CUG training spanned 150 epochs to ensure407
convergence and robustness across different data domains.408

4.4. Experimental Results409

4.4.1. Quantitative Results410

Table 1 presents a quantitative comparison of D3FNet411
with several widely used road extraction models on the412
DeepGlobe dataset, including U-Net [26], U-Net++ [29],413
DeepLabV3+ [5], and D-LinkNet34 [28]. The results of414
these models on the DeepGlobe dataset are reported by415
Zhao et al. [27].416

In terms of key evaluation metrics, including Intersection417
over Union (IoU), F1-score, Precision, and Recall, D3FNet418
demonstrates clear improvements in road detection cover-419
age and recall capability. Specifically, D3FNet achieves420
an IoU of 63.18%, noticeably higher than D-LinkNet’s421
60.39%, and an F1-score of 75.95%, slightly surpassing422
D-LinkNet34’s 75.30%. Notably, D3FNet attains a Recall423
of 82.78%, a substantial improvement over D-LinkNet’s424
66.76%, indicating a stronger ability to identify road re-425
gions. However, D3FNet’s Precision is 73.79%, which426
is significantly lower than D-LinkNet’s 86.36%, and also427
lower than DeepLabV3+’s 90.10%, the highest among all428
models. This drop in precision suggests a higher false pos-429
itive rate, which we attribute in part to ground truth an-430
notation errors: some narrow or degraded road segments431
correctly identified by the model are missing in the ground432
truth, and thus counted as false positives.433

Table 1. Quantitative comparison on DeepGlobe dataset.

Model Backbone IoU (%) F1-score (%) Precision (%) Recall (%)

U-net [26] None 53.99 70.12 85.32 59.72
U-net++ [29] None 39.20 56.32 84.86 42.15
DeepLabV3+ [5] Xception 44.23 61.34 90.10 46.49
D-linkNet34 [28] ResNet34 60.39 75.30 86.36 66.76
Ours (D3FNet) ResNet34 63.18 75.95 73.79 82.78

Table 2. Quantitative comparison on CHN6-CUG dataset

Model Backbone IoU (%) F1 (%) Prec. (%) Rec. (%)

U-net [26] None 48.57 63.77 68.42 59.72
U-net++ [29] None 47.38 63.91 68.33 60.02
DeepLabV3+ [5] Xception 52.04 65.20 72.24 59.41
D-linkNet34 [28] ResNet34 57.56 69.26 72.61 66.21
TransUNet [4] - 31.74 48.18 69.84 36.78
Swin Transformer [16] Swin-T 34.10 50.86 78.03 37.72
SegNet [2] ResNet34 37.24 54.27 62.79 47.78
GCBNet [30] ResNet34 60.44 72.70 - -
CoSwin Transformer [6] ResNet34 61.28 75.99 79.75 72.57
SWEG-Net [27] ResNet34 60.67 74.25 75.69 72.86
MSIF-Net [27] ResNet34 59.31 72.73 74.71 70.85
Ours (D3FNet) ResNet34 63.16 75.75 76.67 77.99

To further investigate this issue, we conduct qualitative 434
visual comparisons in the next subsection. Additionally, to 435
evaluate the model’s robustness and generalization, we also 436
test D3FNet on the CHN6-CUG dataset. The CHN6-CUG 437
dataset is also a widely used high-quality benchmark in the 438
road extraction domain, known for its finer-grained annota- 439
tions that effectively reduce the impact of missing labels on 440
model evaluation. 441

Table 2 summarizes the performance of various models 442
on this dataset. Specifically, the results for U-Net [26], U- 443
Net++ [29], DeepLabV3+ [5], D-LinkNet34 [28], SWEG- 444
Net [27], and MSIF-Net [27] are cited from Zhao et al. [27], 445
while the performance of TransUNet [4], Swin Trans- 446
former [16], SegNet [2], GCBNet [30], and CoSwin Trans- 447
former [6] is referenced from Chen et al. [6] and Zhu et 448
al. [30]. 449

The results clearly demonstrate that D3FNet outper- 450
forms D-LinkNet34 across all evaluation metrics. Specif- 451
ically, it achieves an IoU of 63.16%, representing an im- 452
provement of over 5% compared to D-LinkNet34. The F1- 453
score reaches 75.75%, which is 6.49% higher than that of 454
D-LinkNet. Precision increases to 76.67%, while Recall 455
improves significantly to 77.99%, surpassing D-LinkNet’s 456
66.21% by 11.78%. These results indicate a stronger ability 457
to detect actual road regions and a notably lower miss rate. 458

Compared with more advanced models such as SWEG- 459
Net and MSIF-Net, D3FNet also shows strong perfor- 460
mance in Recall, achieving 77.99% compared to 72.86% 461
for SWEG-Net and 70.85% for MSIF-Net. In terms of 462
IoU, D3FNet reaches 63.16%, outperforming SWEG-Net 463
at 60.67% and MSIF-Net at 59.31%. The F1-score of 464
D3FNet reaches 75.75%, which is higher than SWEG-Net 465
at 74.25% and MSIF-Net at 72.73%. CoSwin Transformer 466
achieves the highest F1-score of 75.99%, slightly surpass- 467
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ing D3FNet. Although CoSwin Transformer also attains468
the highest Precision at 79.75%, D3FNet still performs bet-469
ter than SWEG-Net and MSIF-Net, whose Precision scores470
are 75.69% and 74.71%, respectively. In summary, D3FNet471
demonstrates excellent overall performance on the CHN6-472
CUG dataset. Its improvements in IoU and Recall validate473
its robustness and enhanced capability in extracting fine-474
grained road details under complex urban scenarios.475

4.4.2. Qualitative Analysis476

To further evaluate the effectiveness of our proposed model,477
we conducted a qualitative comparison with D-LinkNet34.478
Due to the unavailability of qualitative results or open-479
source implementations for some of the recent models such480
as SWEG-Net and MSIF-Net, we present the qualitative481
comparison between our proposed D3FNet and the well-482
established baseline D-LinkNet34, which shares a similar483
architecture and has demonstrated competitive performance484
in quantitative evaluation. Figure 5 and Figure 6 illustrate485
the visual comparisons on the DeepGlobe and CHN6-CUG486
datasets respectively. In the visualization, red dashed lines487
denote narrow road segments that are clearly visible in the488
satellite images but are omitted in the Ground Truth (GT),489
these areas are labeled as non-road in the GT. Blue dashed490
lines represent these “non-road” areas successfully identi-491
fied by the models. The results demonstrate that D3FNet492
accurately detects many narrow roads omitted in the labels,493
while D-LinkNet performs poorly in these regions. This494
explains why D3FNet’s Precision score is relatively low:495
many correctly identified roads are treated as false positives496
due to their absence in the GT, increasing the denominator497
of Precision.498

In Figure 6, we analyze six representative images from499
the CHN6-CUG dataset, the left three images depict sub-500
urban satellite scenes and the right three show urban roads.501
D3FNet consistently delivers more stable and precise road502
extraction than D-LinkNet across both suburban and urban503
scenarios. Specifically, D3FNet successfully detects narrow504
roads present in the labels but missed by D-LinkNet, such as505
am100765 sat, am100797 sat, and hk100240 sat,506
and accurately extracts roads omitted in the annotations,507
such as am100863 sat and sh100748 sat. Moreover,508
in bj100521 sat, D-LinkNet mistakenly classifies inter-509
nal pathways within a campus as roads, whereas D3FNet510
effectively avoids such misclassification. These results fur-511
ther confirm the robustness and high recall capability of512
D3FNet in complex urban environments.513

Overall, D3FNet exhibits strong capabilities in preserv-514
ing road connectivity, recovering occluded or narrow road515
segments, and maintaining robustness in densely built ur-516
ban scenes. The enhanced performance can be attributed to517
the differential attention mechanism, which effectively sup-518
presses background noise and highlights salient road fea-519
tures, and the dual-stream decoder, which facilitates com-520

prehensive feature integration and accurate reconstruction. 521

4.5. Ablation Study 522

We conducted ablation experiments on the CHN6-CUG 523
dataset to evaluate the individual and combined contri- 524
butions of the Differential Attention Dilation Extraction 525
(DADE) module and the Dual-stream Decoding Fusion 526
Mechanism (DDFM). The result of D-LinkNet is reported 527
by Zhao et al. [27]. Compared quantitative results are 528
shown in Table 3. 529

Incorporating the DADE module leads to significant im- 530
provements on the CHN6-CUG dataset, with IoU reaching 531
62.49%, F1-score increasing to 74.86%, precision achiev- 532
ing 79.88% and recall reaching 73.68%. When combined 533
with DDFM, IoU further improves to 63.16%, F1-score to 534
75.75%, and recall rises to 77.99%, demonstrating that their 535
integration significantly boosts the model’s ability to detect 536
narrow roads and overall performance. 537

Table 3. Ablation results of Differential Attention Dilation Extrac-
tion (DADE) module and Dual-stream Decoding Fusion Mecha-
nism (DDFM) on CHN6-CUG dataset.

Model Configuration IoU (%) F1-score (%) Precision (%) Recall (%)

D-LinkNet (Baseline) 57.56 69.26 72.61 66.21
D-LinkNet + DADE 62.49 74.86 79.88 73.68
D-LinkNet + DADE + DDFM (D3FNet) 63.16 75.75 76.67 77.99

5. Conclusion 538

In this work, we proposed D3FNet, a Dilated Dual-Stream 539
Differential Attention Fusion Network specifically designed 540
for the fine-grained segmentation of narrow roads in high- 541
resolution remote sensing imagery. The motivation stems 542
from real-world challenges in cooperative autonomous driv- 543
ing and remote perception systems, where narrow, oc- 544
cluded, and low-contrast road segments are critical yet re- 545
main difficult to detect accurately. Through the integration 546
of three core innovations—(1) the Differential Attention Di- 547
lation Extraction (DADE) module, (2) the Dual-stream De- 548
coding Fusion Mechanism (DDFM), and (3) an optimized 549
multi-scale dilation strategy—D3FNet effectively balances 550
local structural precision with global semantic understand- 551
ing. The DADE module enhances subtle road features while 552
suppressing background noise, the DDFM alleviates gra- 553
dient interference and facilitates fine-to-coarse information 554
fusion, and the (1,3,5,9) dilation configuration mitigates 555
gridding artifacts to maintain road continuity. 556

Comprehensive experiments conducted on the Deep- 557
Globe and CHN6-CUG datasets demonstrate that D3FNet 558
outperforms state-of-the-art baselines in terms of IoU, Re- 559
call, and F1-score, particularly in cases involving frag- 560
mented and low-visibility road segments. The ablation stud- 561
ies further confirm the complementary benefits of combin- 562
ing differential attention with dual-stream decoding. These 563
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Figure 5. Narrow Road Extraction Comparison on DeepGlobe Dataset.

Figure 6. Narrow Road Extraction Comparison on CHN6-CUG Dataset.

results suggest that D3FNet offers a robust and scalable564
solution for road structure extraction in complex environ-565
ments, providing valuable support for HD map generation,566
path planning, and autonomous navigation in cooperative567
perception systems.568
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