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Abstract

Vision-Language Models (VLMs) are increasingly used in001
autonomous driving for scene understanding, hazard de-002
tection, and decision-making support. Yet, knowing which003
traffic objects these models prioritize is crucial for safety004
validation and trust. Existing interpretability methods pro-005
vide pixel-level attributions but fail to answer the key ques-006
tion: “Which specific objects—vehicles, pedestrians, traffic007
signs—influence the model’s driving decisions?”008

We introduce PixelSHAP, a model-agnostic framework009
for object-level explainability in Vision-Language Models010
applied to traffic scenarios. PixelSHAP extends Shapley-011
based attribution to structured visual entities, systemati-012
cally quantifying how individual traffic participants influ-013
ence a VLM’s reasoning about driving situations. Operat-014
ing purely on input-output behavior, our method is compat-015
ible with both open-source models (LLaVA, LLaMA-Vision)016
and commercial systems (GPT-4V, Gemini) commonly used017
in autonomous driving applications.018

Our approach introduces novel masking strategies in-019
cluding Bounding Box with Overlap Avoidance (BBOA) that020
address fundamental challenges in traffic scene attribution,021
achieving complete object occlusion while minimizing in-022
terference with neighboring vehicles or infrastructure. We023
evaluate PixelSHAP on traffic scene understanding tasks,024
demonstrating its ability to reveal which objects VLMs pri-025
oritize for different driving scenarios. Compared to simple026
baselines, PixelSHAP provides semantically meaningful at-027
tributions that align with human expectations about traffic028
safety priorities.029

Beyond technical contribution, PixelSHAP enables030
safety engineers to audit VLM behavior in autonomous031
driving contexts, identify potential failure modes, and vali-032
date that models focus on safety-critical objects. Our imple-033
mentation provides immediate practical value for develop-034
ing more transparent and trustworthy autonomous driving035
systems.036

1. Introduction 037

Vision-Language Models (VLMs) are increasingly integral 038
to autonomous driving systems, supporting scene under- 039
standing, hazard detection, and driving decision assistance. 040
As these models move from prototypes to safety-critical de- 041
ployments, understanding their decision-making is crucial 042
for ensuring passenger safety and public trust. 043

Consider a scenario: a VLM analyzes a busy intersec- 044
tion and outputs: “Pedestrian visible in crosswalk, vehi- 045
cle should yield.” This triggers braking protocols. Yet, 046
among multiple pedestrians—on sidewalks, near the cross- 047
walk, and one crossing—which person influenced the de- 048
cision? Attribution is essential to validate that the system 049
responded to the correct participant. 050

Figure 1. PixelSHAP reveals object-level attribution in traffic
scenes. It identifies which pedestrian influenced the VLM’s safety
assessment, enabling validation that the model focused on the ac-
tual crossing pedestrian.

The core challenge is the semantic gap between how 051
VLMs process visual information and how we interpret 052
their decisions for safety validation. Existing methods fall 053
short: gradient-based approaches like GradCAM require 054
model internals unavailable in commercial VLMs, while 055
pixel-level perturbation methods such as RISE blur distinct 056
traffic participants into indecipherable importance regions. 057

We propose PixelSHAP, a model-agnostic framework for 058
object-level interpretability in traffic scenarios. Extending 059
Shapley value attribution from tokens to structured visual 060
entities, PixelSHAP quantifies how vehicles, pedestrians, 061
traffic signs, and infrastructure influence VLM assessments. 062
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A key innovation is our object-level perturbation ap-063
proach. Our Bounding Box with Overlap Avoidance064
(BBOA) achieves complete object occlusion while preserv-065
ing context for neighboring elements, enabling clean attri-066
bution critical for safety validation.067

This paper makes four contributions to interpretable AI068
for autonomous driving:069

• Traffic-Focused Object-Level Attribution: A frame-070
work identifying traffic participants influencing VLM071
decisions, compatible with open-source and commercial072
models.073

• BBOA Masking Strategy: A perturbation method that074
occludes target objects while preserving surrounding075
context.076

• Multi-Model Validation: Evaluation across four077
VLMs, comparing against adapted interpretability base-078
lines.079

• Traffic Scene Evaluation: Protocols for assessing at-080
tribution quality in driving-relevant contexts.081

The remainder of this paper describes our methodology,082
experimental validation, and implications for interpretable083
autonomous driving systems.084

2. Related Work085

Understanding VLM decisions in traffic scenarios requires086
explainability methods that can identify which specific vi-087
sual objects influence model outputs. The choice of explain-088
ability approach is fundamentally constrained by model ac-089
cessibility and the semantic granularity required for safety090
validation in autonomous driving applications.091

2.1. White-Box vs. Black-Box Explainability092

Explainability methods for VLMs divide into white-box ap-093
proaches requiring access to model internals and black-box094
methods operating solely on input-output behavior. White-095
box methods like Grad-CAM [14] analyze internal gradi-096
ents and activations to generate attribution maps. LVLM-097
Interpret [16] provides attention visualization, relevancy098
maps, and causal interpretation for vision-language models099
by accessing transformer weights and gradients.100

White-box methods offer detailed insights into model101
mechanisms but face limitations for practical autonomous102
driving applications. Many state-of-the-art VLMs de-103
ployed in commercial autonomous systems, including GPT-104
4V [7] and Gemini-2.0 [1], do not provide access to inter-105
nal weights or gradients. For applications requiring inter-106
pretability of production-deployed models, black-box ap-107
proaches become essential.108

2.2. Black-Box Perturbation-Based Methods109

Black-box methods explain model decisions through sys-110
tematic input perturbation and output analysis, making111

them compatible with any VLM regardless of architec- 112
ture. RISE [10] generates importance maps by randomly 113
masking image regions and measuring output changes. 114
LIME [13] learns local linear approximations around input 115
instances using perturbation-based sampling. 116

These pixel-level approaches face limitations when ana- 117
lyzing traffic scenes with multiple objects. When vehicles, 118
pedestrians, and infrastructure appear in proximity, pixel- 119
based attribution creates blended importance maps that can- 120
not isolate individual traffic participants. For autonomous 121
driving safety validation, understanding which specific ob- 122
ject influenced a model’s assessment requires object-level 123
granularity that pixel-based methods cannot provide. 124

2.3. Shapley Values for Principled Attribution 125

Shapley values from cooperative game theory [15] provide 126
mathematically principled feature attribution with desirable 127
properties including efficiency, symmetry, and additivity. 128
TokenSHAP [3] demonstrated their effectiveness for lan- 129
guage model interpretability by quantifying individual to- 130
ken contributions. MM-SHAP [8] applied Shapley values 131
to multimodal models, measuring the relative importance 132
of visual versus textual modalities using image patches. 133

While Shapley-based approaches offer theoretical rigor, 134
existing applications focus on different granularities and 135
questions than object-level attribution in traffic scenarios. 136
Extending Shapley principles to semantic object-level anal- 137
ysis while maintaining black-box compatibility remains an 138
active area of development. 139

2.4. Multimodal Interpretability: Related Ap- 140
proaches and Distinctions 141

Recent interpretability frameworks for VLMs address com- 142
plementary aspects of multimodal understanding, though 143
with different focus areas than object-level attribution: 144

MM-SHAP [8] provides valuable insights into 145
modality-level contributions, quantifying whether models 146
rely more on textual or visual information. However, its 147
patch-based granularity cannot isolate individual traffic 148
participants within scenes. While MM-SHAP can reveal 149
that a model used “60% vision, 40% text,” it cannot 150
distinguish which specific vehicle or pedestrian drove that 151
visual contribution—a distinction critical for autonomous 152
driving safety validation. 153

LVLM-Interpret [16] offers comprehensive analysis 154
through attention visualization and causal interpretation, 155
providing detailed insights into model reasoning processes. 156
However, its dependency on white-box access to attention 157
weights and gradients limits applicability to commercial 158
VLMs commonly deployed in autonomous systems. Ad- 159
ditionally, its patch-based visualizations operate at spatial 160
resolutions that may not align with semantic object bound- 161
aries essential for traffic safety analysis. 162
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These methods address important questions about multi-163
modal reasoning and provide valuable debugging capabili-164
ties. Our work complements these approaches by focusing165
specifically on the object-level attribution question that ex-166
isting methods cannot directly address due to granularity167
and accessibility constraints.168

2.5. Object-Level Attribution: Addressing the169
Granularity Gap170

Current black-box methods cannot directly answer ques-171
tions critical for traffic scene understanding: “Which spe-172
cific vehicle influenced the model’s safety assessment?” or173
“Did the model focus on the crossing pedestrian or back-174
ground elements?” This limitation stems from the granular-175
ity mismatch between available attribution methods (pixels176
or patches) and the semantic units relevant for autonomous177
driving validation (objects representing traffic participants).178

The autonomous driving context amplifies these chal-179
lenges because safety validation requires understand-180
ing attribution at the semantic level of traffic partic-181
ipants—vehicles, pedestrians, cyclists, and infrastruc-182
ture—rather than abstract visual regions. Existing pixel-183
level methods cannot distinguish between a pedestrian ac-184
tively crossing versus one standing on a sidewalk when both185
appear in the same image region, yet this distinction is crit-186
ical for validating autonomous driving decisions.187

2.6. Our Approach188

We introduce PixelSHAP to address the object-level attri-189
bution gap by extending Shapley-based attribution to indi-190
vidual traffic objects while maintaining black-box compati-191
bility with commercial VLMs. Our approach builds on the192
theoretical foundation of Shapley values while adapting the193
methodology to operate on semantic objects rather than pix-194
els or patches.195

PixelSHAP complements existing interpretability meth-196
ods by focusing on the specific granularity and accessibil-197
ity requirements of autonomous driving applications. We198
demonstrate improvements over adapted versions of exist-199
ing methods (RISE-Objects) and simple heuristics, showing200
that principled Shapley attribution can provide more accu-201
rate object-level explanations for traffic safety validation.202
Our evaluation includes comparison with gradient-based203
methods where applicable, providing insight into the rela-204
tive performance of black-box versus white-box approaches205
for object-level attribution tasks.206

3. Problem Statement207

We formalize object-level attribution in Vision-Language208
Models (VLMs) as a black-box interpretability challenge:209
quantifying how individual visual objects contribute to a210
model’s textual output.211

3.1. Problem Formulation 212

Given a VLM f mapping an image I and optional text 213
prompt p to a response y = f(I, p), our goal is to as- 214
sign an attribution score ϕi to each object oi in O = 215
{o1, o2, ..., on}, representing its influence on y. Attribution 216
scores must satisfy: 217

1. Efficiency:
∑n

i=1 ϕi = f(I, p)− f(∅, p), where ∅ is the 218
scene with all objects removed. 219

2. Symmetry: Identical contributors receive equal scores. 220
3. Additivity: Scores combine consistently across object 221

subsets. 222

3.2. Key Constraints and Requirements 223

Black-Box Compatibility: The method must function 224
without access to model internals, gradients, or attention 225
weights, ensuring compatibility with commercial VLMs. 226
Object-Level Granularity: Beyond pixel-level maps, we 227
require semantic object attribution to answer, e.g., “Which 228
specific vehicle influenced the decision?” Semantic Preser- 229
vation: Perturbations must fully remove an object’s contri- 230
bution while maintaining scene context. 231

3.3. Applications and Use Cases 232

This formulation supports critical interpretability needs: In 233
autonomous systems, identifying which traffic participants 234
(vehicles, pedestrians, signs) influenced a VLM’s assess- 235
ment validates correct prioritization of safety-critical ob- 236
jects. In content moderation, it clarifies which visual ele- 237
ments trigger policy violations, improving automated sys- 238
tems. In medical imaging, object-level attribution aids in 239
validating diagnostic outputs and building clinician trust. In 240
general scene understanding, it verifies that VLMs attend 241
to relevant elements rather than spurious correlations. 242

3.4. Technical Challenges 243

Object Segmentation Dependency: Reliable attribution 244
depends on accurate detection and segmentation of objects. 245
Occlusion Strategy: Removing an object cleanly while 246
preserving scene context requires sophisticated masking to 247
avoid artifacts or distortion of neighboring elements. Com- 248
putational Efficiency: Exact Shapley value computation is 249
infeasible; efficient approximations are essential. Evalua- 250
tion Methodology: Assessing attribution quality requires 251
ground truth aligned with human judgments of object im- 252
portance. 253

The following sections describe how PixelSHAP ad- 254
dresses these challenges. 255

4. Methodology 256

PixelSHAP extends Shapley value attribution from textual 257
tokens to visual objects, enabling principled object-level in- 258
terpretability for Vision-Language Models. Our approach 259
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operates through three stages: object identification with260
segmentation, systematic perturbation, and attribution com-261
putation.262

4.1. Framework Design263

The framework requires both object detection (bounding264
boxes) and segmentation masks for each object. Users265
can integrate results from any detection system suited to266
their application domain, including category-specific mod-267
els like YOLO [11] variants or open-vocabulary systems268
like GroundingDINO [6]. When detection systems provide269
only bounding boxes, we automatically generate segmenta-270
tion masks using SAM2 [4] within the detected regions to271
ensure complete object-level analysis.272

We formulate object attribution as a cooperative game273
where detected objects serve as players and the VLM’s274
response represents the outcome. For objects O =275
{o1, o2, ..., on}, each object’s Shapley value ϕi quantifies276
its contribution:277

ϕi =
∑

S⊆O\{oi}

|S|!(|O| − |S| − 1)!

|O|!
[v(S ∪ {oi})− v(S)]

where v(S) measures the VLM’s response when only278
objects in subset S remain visible.279

4.2. Object Perturbation Strategy280

The central challenge lies in removing target objects while281
preserving scene context for accurate attribution. We pro-282
pose Bounding Box with Overlap Avoidance (BBOA) and283
evaluate it against two established baselines.284

Precise masking applies exact segmentation boundaries285
but creates irregular occlusions that may introduce visual286
artifacts. Bounding box masking uses rectangular regions287
but risks occluding adjacent objects in dense scenes.288

BBOA combines the advantages of both approaches289
through a three-step process: first masking the target ob-290
ject’s bounding box region, then identifying other objects291
whose segmentation masks intersect this region, and finally292
restoring those overlapping objects by unmasking their pre-293
cise boundaries. This strategy ensures complete target re-294
moval while preserving neighboring objects regardless of295
scene density.296

4.3. Computational Implementation297

Exact Shapley computation requires evaluating 2n object298
subsets, which becomes computationally prohibitive for299
scenes with many objects. We employ sampling-based ap-300
proximation that reduces VLM queries from exponential to301
linear scaling, typically requiring 100-300 evaluations for302
scenes with 10-15 objects and completing analysis within303
30-60 seconds.304

Response similarity is measured using semantic embed- 305
ding approaches through sentence transformers [12] or lex- 306
ical similarity metrics depending on application require- 307
ments. The framework operates entirely through VLM 308
input-output interfaces, maintaining compatibility with both 309
open-source and commercial models without requiring ac- 310
cess to internal representations. 311

5. Experimental Evaluation 312

We evaluate PixelSHAP’s effectiveness for object-level 313
attribution in vision-language models through systematic 314
comparison with existing black-box methods on carefully 315
constructed human-annotated datasets. 316

5.1. Dataset Construction 317

The absence of suitable benchmarks for object-level 318
VLM attribution necessitated creating specialized evalua- 319
tion datasets. We developed two complementary datasets 320
with human annotation protocols designed to assess object- 321
level interpretability across different visual domains. 322

BDD10K Traffic Dataset: We selected 250 repre- 323
sentative images from the Berkeley DeepDrive dataset 324
(BDD10K) [18], focusing on driving scenarios containing 325
multiple traffic participants (vehicles, pedestrians, cyclists, 326
traffic signs). Each scene was chosen to represent common 327
driving situations where understanding object-level atten- 328
tion becomes safety-critical: intersections with multiple ve- 329
hicles, crosswalks with pedestrians, and complex urban en- 330
vironments with mixed traffic. 331

Three experienced annotators followed a structured pro- 332
tocol: first, they randomly selected one object from each 333
traffic scene, then formulated driving-relevant questions 334
that would require focusing on that specific object to answer 335
correctly (e.g., ”Which vehicle poses the greatest safety 336
concern?” or ”What traffic element should influence the 337
driver’s next action?”). This approach ensures unbiased 338
ground truth while maintaining realistic question formula- 339
tion. We measured inter-annotator agreement using Fleiss’ 340
kappa [2] and retained only scenes achieving substantial 341
consensus (κ > 0.7). Figure 3 illustrates representative ex- 342
amples from this dataset, showing the diversity of objects 343
and question types used in evaluation. 344

COCO General Dataset: To demonstrate broader ap- 345
plicability beyond traffic scenarios, we created a comple- 346
mentary dataset using 250 images selected from COCO [5] 347
validation set. Following identical annotation protocols, an- 348
notators first randomly selected objects from general visual 349
scenes, then generated focused questions requiring attention 350
to those specific objects. This dataset enables assessment 351
of PixelSHAP’s effectiveness across diverse visual contexts 352
while maintaining the same evaluation framework. 353

Both datasets are publicly available on Hugging 354
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Figure 2. Overview of the PixelSHAP framework. The method systematically perturbs object groups, queries a vision-language model
(VLM), and computes Shapley values to quantify object importance.

Figure 3. Sample annotations from BDD10K Traffic Dataset
showing diverse object types and corresponding questions. Each
example demonstrates how human annotators formulated ques-
tions requiring attention to specific objects for accurate answering.

Face[17], providing standardized benchmarks for future re-355
search in object-level VLM interpretability.356

5.2. Evaluation Protocol357

Our evaluation protocol measures how well attribution358
methods identify the same objects that human experts con-359
sider most relevant for answering given questions. For each360
image-question pair, we provide the question and corre-361
sponding answer to the VLM, then apply different attribu-362
tion methods to identify which objects the model should fo-363
cus on. We compare these attributions against human anno-364
tations to assess attribution quality.365

This framework enables direct comparison of different366
attribution approaches while maintaining consistency with367
human reasoning patterns about object relevance in visual368
question answering tasks.369

5.3. Masking Strategies 370

PixelSHAP’s effectiveness depends critically on the mask- 371
ing strategy used during object occlusion. We investigate 372
two primary approaches for handling object removal during 373
attribution computation: 374

Precise Masking: Objects are masked exactly according 375
to their segmentation boundaries, replacing object pixels 376
with neutral background or inpainting [9]. This approach 377
maintains precise object boundaries but may create artifi- 378
cial visual artifacts at object edges. 379

Bounding Box Occlusion with Adjustment (BBOA): 380
Objects are occluded using expanded bounding boxes that 381
fully contain the object while minimizing overlap with 382
neighboring objects. This strategy avoids edge artifacts and 383
prevents unintended masking of adjacent objects that might 384
confound attribution computation. 385

Figure 4 illustrates these different masking approaches 386
and their impact on attribution quality. The BBOA strategy 387
demonstrates superior performance by ensuring complete 388
object occlusion while preserving the integrity of surround- 389
ing visual context. 390

5.4. Baseline Comparison Framework 391

We establish PixelSHAP’s effectiveness through com- 392
parison with existing black-box interpretability methods 393
adapted for object-level analysis. Since direct compari- 394
son requires operating at the same semantic granularity, we 395
adapt pixel-level methods to produce object-level attribu- 396
tions. 397

RISE-Objects: The original RISE method [10] gener- 398
ates pixel-level importance maps through random masking. 399
We adapt RISE to operate at object-level granularity by ran- 400
domly masking subsets of detected objects and measuring 401
resulting changes in model output similarity. This preserves 402
RISE’s core perturbation methodology while enabling fair 403
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Figure 4. Comparison of masking strategies for object occlu-
sion in PixelSHAP. (a) Precise masking follows exact segmenta-
tion boundaries. (b) Bounding Box Occlusion with Adjustment
(BBOA) uses expanded boxes to ensure complete occlusion while
minimizing interference with neighboring objects. BBOA consis-
tently achieves better attribution performance across different sce-
narios.

comparison at the semantic object level.404
Simple Heuristic Baselines: We include largest object405

(by bounding box area) and central object (closest to image406
center) as basic attribution methods. These baselines test407
whether sophisticated attribution approaches provide mean-408
ingful improvements over simple assumptions about visual409
attention.410

Random Baseline: Random object selection establishes411
the performance floor and validates that our evaluation met-412
rics capture meaningful attribution quality differences.413

5.5. Evaluation Metrics414

We assess attribution quality using metrics aligned with415
human annotation protocols and practical interpretability416
needs:417

Recall@1: Percentage of test cases where the highest-418
attributed object matches human expert annotation. This419
metric directly measures whether attribution methods iden-420
tify the same object that human experts consider most rele-421
vant.422

Recall@3: Percentage where the human-annotated tar-423
get object appears among the top-3 attributed objects, pro-424
viding insight into attribution ranking quality.425

Mean Reciprocal Rank (MRR): Average inverse rank426
of the ground-truth object across all test cases, offering a nu-427
anced view of attribution accuracy that accounts for ranking428
position.429

5.6. Results and Analysis430

Table 1 presents comprehensive performance comparison431
across four representative VLMs on both datasets. The432
results demonstrate that PixelSHAP with BBOA mask-433
ing achieves the best performance in nearly all scenarios,434

though some competitive cases reveal interesting model- 435
specific characteristics. 436

Model-Specific Performance Patterns: Gemini-2.0- 437
flash achieves the highest overall performance across both 438
datasets, with particularly strong results on COCO gen- 439
eral scenes (67.48% Recall@1) and leading performance 440
on traffic scenarios (64.7% Recall@1). GPT-4o demon- 441
strates competitive performance on traffic scenarios (63.8% 442
Recall@1), while both LLaVA-v1.5-7B and LLaMA-3.2- 443
11B-Vision show more modest but consistent results across 444
datasets. 445

Masking Strategy Analysis: BBOA achieves the best 446
performance in the vast majority of cases, though some no- 447
table exceptions highlight the complexity of optimal mask- 448
ing strategies. LLaMA-3.2-11B-Vision shows a rare case 449
where precise masking slightly outperforms BBOA on traf- 450
fic Recall@1 (56.1% vs 55.8%), while LLaVA-v1.5-7B 451
demonstrates competitive performance where precise mask- 452
ing achieves higher Recall@3 and MRR scores on traffic 453
scenarios. These close margins suggest that masking strat- 454
egy optimization may be model-dependent in specific con- 455
texts. 456

Attribution Method Robustness: The consistently 457
strong performance of BBOA across different models and 458
datasets validates our approach, with typical improvements 459
of 3-8 percentage points over precise masking and 10-20 460
percentage points over baseline methods. The few competi- 461
tive cases where precise masking approaches BBOA perfor- 462
mance (difference 0.3 percentage points) demonstrate that 463
while BBOA is generally superior, the optimal strategy may 464
require fine-tuning for specific model architectures. 465

Baseline Comparison: PixelSHAP variants substan- 466
tially outperform simple heuristics and RISE-Objects across 467
all conditions. RISE-Objects achieves moderate perfor- 468
mance but consistently lags behind PixelSHAP approaches 469
by 5-15 percentage points in Recall@1, confirming the ben- 470
efits of principled Shapley-based attribution for object-level 471
interpretability. 472

Dataset-Specific Insights: Performance patterns show 473
interesting domain dependencies. Gemini-2.0-flash main- 474
tains strong advantages on both datasets, suggesting robust 475
generalization capabilities. The traffic scenarios generally 476
yield slightly higher absolute performance across models, 477
potentially reflecting the more structured nature of driving 478
scenes compared to diverse COCO imagery. 479

5.7. Computational Efficiency 480

PixelSHAP processing requires 35-65 seconds per image 481
depending on object count and VLM inference speed, using 482
approximately 2-3× the number of detected objects in API 483
calls rather than the exponential scaling that naive Shap- 484
ley computation would require. This represents practical 485
computational requirements suitable for offline analysis and 486
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Model Method BDD10K Traffic Dataset COCO General Dataset

R@1 (%) R@3 (%) MRR R@1 (%) R@3 (%) MRR

GPT-4o

PixelSHAP (BBOA) 63.8 86.2 0.75 60.56 87.66 0.73
PixelSHAP (Precise) 59.2 82.1 0.71 57.61 84.71 0.69
PixelSHAP (BBox) 55.7 78.4 0.67 53.18 85.20 0.68

RISE-Objects 43.1 67.8 0.57 42.3 69.2 0.56

Gemini-2.0-flash

PixelSHAP (BBOA) 64.7 85.9 0.76 67.48 89.17 0.77
PixelSHAP (Precise) 62.1 83.2 0.73 59.62 84.73 0.71
PixelSHAP (BBox) 59.4 80.8 0.71 58.10 88.68 0.72

RISE-Objects 47.6 72.1 0.61 45.7 71.6 0.59

LLaVA-v1.5-7B

PixelSHAP (BBOA) 48.9 71.4 0.61 49.78 83.28 0.65
PixelSHAP (Precise) 48.2 72.1 0.62 49.27 75.38 0.61
PixelSHAP (BBox) 45.6 68.9 0.59 43.88 76.32 0.59

RISE-Objects 41.3 65.7 0.55 37.2 64.5 0.52

LLaMA-3.2-11B-Vision

PixelSHAP (BBOA) 55.8 78.3 0.68 52.71 86.72 0.68
PixelSHAP (Precise) 56.1 77.9 0.68 49.76 80.27 0.64
PixelSHAP (BBox) 53.4 76.2 0.66 50.76 80.32 0.65

RISE-Objects 44.8 68.5 0.58 38.9 66.4 0.53

Largest Object 38.4 62.5 0.51 23.14 60.85 0.43
Central Object 31.7 58.1 0.46 36.92 70.62 0.52

Table 1. Object-level attribution performance comparison across VLMs and datasets. Results show mean performance over test sets. Bold
indicates best performance for each model-method combination.

safety validation applications in autonomous driving sys-487
tems.488

5.8. Limitations and Future Work489

Our evaluation reveals several limitations that inform future490
research directions. Performance degrades in extremely491
cluttered scenes (> 15 objects) where occlusion becomes492
pervasive. Attribution quality also depends on segmenta-493
tion accuracy, creating dependency on upstream computer494
vision components.495

Segmentation Quality Impact: We evaluate attribution496
degradation under noisy segmentation by introducing con-497
trolled errors (10-30% mask boundary deviation) to ground-498
truth objects. Performance drops 8-15% with moderate499
noise, confirming segmentation dependency while demon-500
strating reasonable robustness to realistic segmentation er-501
rors.502

The varying performance patterns across models suggest503
that future work should explore model-specific attribution504
strategies that account for architectural differences in visual505
reasoning capabilities.506

5.9. Qualitative Examples507

Figure 5 demonstrates PixelSHAP’s ability to provide in-508
tuitive, context-sensitive attributions across different query509
types and scenarios.510

Figure 5. PixelSHAP attribution examples across traffic and gen-
eral scenarios. Each row shows the same scene analyzed with dif-
ferent questions, demonstrating context-sensitive attribution. Red
intensity indicates object importance scores.

Traffic Scene Analysis: In driving scenarios, Pix- 511
elSHAP correctly prioritizes safety-critical objects based 512
on query context. When asked ”Which vehicle should 513
the driver monitor?”, the method emphasizes the approach- 514
ing car rather than parked vehicles. For pedestrian- 515
focused queries like ”Is it safe to proceed?”, attribution 516
shifts to highlight the person near the crosswalk while de- 517
emphasizing background traffic. 518
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Context Sensitivity: The examples demonstrate sophis-519
ticated adaptation to query specificity. Identical visual520
scenes produce different attribution patterns when analyzed521
with different questions. General queries about scene con-522
tent distribute attention across multiple objects, while spe-523
cific queries about particular object types concentrate attri-524
bution on relevant entities.525

General Scene Understanding: Beyond traffic appli-526
cations, PixelSHAP provides meaningful attributions for527
diverse visual reasoning tasks. When analyzing animal528
scenes, queries about ”What animals are present?” appro-529
priately emphasize biological entities while ignoring back-530
ground objects. Action-focused questions shift attribution531
toward objects involved in activities rather than static scene532
elements.533

These qualitative results confirm that PixelSHAP cap-534
tures the contextual reasoning that makes VLM inter-535
pretability valuable for practical applications. The method’s536
ability to adapt attribution patterns based on query intent en-537
ables users to understand not just what objects are visually538
prominent, but which objects actually influence the model’s539
reasoning for specific tasks.540

6. Discussion541

Our work fills a critical gap in understanding how Vision-542
Language Models (VLMs) reason about traffic scenes, of-543
fering practical tools for safety validation in autonomous544
driving.545

6.1. Key Findings546

PixelSHAP extends Shapley-based attribution to object-547
level analysis while maintaining black-box compatibility,548
essential for commercial VLMs. The BBOA masking strat-549
egy resolves the core challenge of occluding target objects550
without interfering with surrounding context, outperform-551
ing existing perturbation methods.552

Consistent performance across diverse VLM architec-553
tures indicates that our approach captures fundamental as-554
pects of vision-language reasoning for traffic understand-555
ing. While commercial models achieve higher absolute at-556
tribution accuracy, relative gains from object-level analysis557
remain comparable across architectures.558

For autonomous driving, PixelSHAP allows engineers to559
verify that VLMs attend to the correct traffic participants,560
supporting validation workflows critical for safe deploy-561
ment.562

6.2. Limitations563

Attribution accuracy depends on segmentation quality,564
making it reliant on upstream detection performance. Cur-565
rent processing times (35–65 seconds per image) suit offline566
analysis but limit real-time use.567

Though BBOA minimizes distribution shift, masking 568
can still alter image statistics, especially in cluttered scenes 569
with over 15 objects. Evaluation relies on human annota- 570
tions, which may not fully capture expert safety priorities. 571

6.3. Future Directions 572

Integration with Autonomous Systems: Embedding attri- 573
bution into development workflows could enable continu- 574
ous validation during system updates. Temporal Analy- 575
sis: Extending to video sequences would support reason- 576
ing about dynamic object importance. Domain-Specific 577
Models: Adapting the framework for traffic-specific cate- 578
gories (e.g., emergency vehicles, construction zones) could 579
improve safety-critical assessments. Computational Op- 580
timization: Approximation models may accelerate attribu- 581
tion, enabling iterative development workflows. 582

7. Conclusion 583

We introduced PixelSHAP, a model-agnostic framework for 584
object-level attribution in Vision-Language Models for traf- 585
fic scene understanding. By extending Shapley value attri- 586
bution to structured visual entities, our approach provides 587
meaningful explanations that enable safety validation in au- 588
tonomous driving. 589

Through systematic evaluation, we demonstrated consis- 590
tent improvements over prior methods. Our BBOA mask- 591
ing strategy addresses key challenges in perturbation-based 592
attribution while supporting compatibility with commercial 593
VLMs. 594

PixelSHAP empowers engineers to identify which traf- 595
fic participants influence model decisions, supporting safety 596
validation workflows for autonomous systems. Our open- 597
source implementation facilitates adoption in research and 598
practice. Future work should focus on computational ef- 599
ficiency and integration into autonomous vehicle develop- 600
ment pipelines to enhance transportation safety. 601

Supplementary Material 602

Additional materials including code, datasets, and extended 603
results will be made available upon acceptance to maintain 604
anonymity during the review process. 605
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