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Abstract

Accurate cooperative 3-D perception under tight Vehicle-001
to-Vehicle(V2V) bandwidth budgets remains a major chal-002
lenge for Connected Autonomous Vehicles (CAVs). We003
present SlimComm, a bandwidth-aware framework that004
fuses LiDAR with 4-D radar while exchanging only a hand-005
ful of semantically important Bird’s-Eye-View (BEV) fea-006
tures. SlimComm first places sparse query locations guided007
by two priors: (i) a motion-centric Dynamic Map derived008
from radar Doppler and (ii) a Confidence Map highlight-009
ing likely foreground cells and occlusion shadows. Fea-010
tures gathered at these queries from neighbouring CAVs011
are then fused by a gated multi-scale deformable-attention012
block. Because no public multi-agent radar benchmark with013
per-point Doppler exists, we release OPV2V-R and Adver-014
City-R CARLA-based extensions of two popular V2X suites,015
together with our radar-simulation toolbox and full code.016
On these datasets, SlimComm achieves a balance between017
accuracy and efficiency, matching or exceeding the perfor-018
mance of prior baselines while transmitting only ∼10 % of019
data. We will re-evaluate SlimComm on real-sensor data as020
soon as such a dataset becomes publicly available.021

1. Introduction022

Autonomous driving and other unmanned systems have023
made rapid strides, spurred by the demand for reliable 3-024
D object detection [11]. Yet dependable perception in025
complex outdoor environments remains difficult because026
of occlusions, adverse weather, and sensor-specific limita-027
tions [13]. LiDAR supplies centimetre-level geometry but028
degrades at long range and in fog or rain [2]; conversely, 4-029
D radar offers resilient range–Doppler measurements with030
coarse angular resolution [2, 21].031

Collaborative perception through Vehicle-to-Everything032
(V2X) communication can overcome these weaknesses by033
allowing vehicles to see beyond their own field of view.034
However, broadcasting dense Bird’s-Eye-View (BEV) fea-035

ture maps quickly overwhelms capacity of typical DSRC/C- 036
V2X links. The key question is therefore which information 037
to share and from whom to request it. 038

We answer this question with SlimComm, a proac- 039
tive cooperative-perception framework that transmits only a 040
sparse set of high-value queries instead of full feature maps. 041
The query strategy follows two steps: 042

(i) Dynamic Map. Ego-motion-compensated radar Doppler 043
forms a motion-centric map; heuristic queries placed on 044
this map focus on moving objects. 045

(ii) Exploratory queries. A confidence prior highlights likely 046
foreground cells; additional queries dropped in the result- 047
ing occlusion shadows prompt collaborators to recover 048
partially or fully hidden objects. 049

Each ego vehicle broadcasts its queries. Chosen neigh- 050
bours warp their local BEV features into the ego frame, ex- 051
tract a halo-enriched context window around every query 052
(see Sec. 4.4), and return those features. The ego agent then 053
fuses ego and neighbour responses using a gated multi-scale 054
deformable-attention block. 055

Contributions. 056

• A Doppler-compensated Dynamic Map that converts raw 057
4-D radar velocities into a motion prior for query place- 058
ment; 059

• A semantic-prior query strategy targeting dynamic ob- 060
jects and occlusion-prone regions, achieving a superior 061
accuracy–bandwidth trade-off; 062

• A communication-efficient collaborator-selection 063
scheme that enriches returned features with halo context 064
while sending only ∼10 % of the bytes required by 065
full-map sharing; 066

• OPV2V-R and Adver-City-R: CARLA-based extensions 067
of two popular V2X benchmarks augmented with 4-D 068
radar, released together with our radar-simulation toolbox 069
and full training code to enable reproducible research un- 070
til public multi-agent Doppler datasets become available. 071
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2. Related Work072

2.1. Communication-Efficient Cooperative Percep-073
tion074

Early frameworks such as V2VNet [19], Attentive Fu-075
sion [25] and AdaFusion [14] exchange dense BEV feature076
maps among CAVs. Although this maximises accuracy, it077
quickly overloads the 10–20 Mbit s−1 V2X channel; com-078
pressing the maps alleviates traffic but sacrifices precision.079

Later work therefore embraces sparse communication.080
Where2Comm [6] transmits only high-confidence BEV081
cells, When2Com [10] triggers exchange when ego-view082
uncertainty spikes, and CoSDH [22] prunes messages via083
a supply–demand model. SCOPE [26], StreamLTS [31]084
and DelAwareCol [1] add spatio-temporal filters to squeeze085
bandwidth further.086

However, these methods still rely on purely statistical087
confidence or entropy cues; they rarely encode semantic088
knowledge of motion or occlusion. Consequently, much of089
the transmitted data corresponds to static background, not090
objects of interest.091

2.2. Sensing Modalities092

Most cooperative systems rely on LiDAR alone or Li-093
DAR–camera fusion [1, 3, 6, 10, 14, 19, 22, 25, 26, 31].094
By contrast, LiDAR–radar fusion has recently boosted095
single-vehicle perception: LiRaFusion introduces a learn-096
able gating scheme [16]; InterFusion adds pillar-wise at-097
tention [18]; RLNet compensates radar noise [23]; and Bi-098
LRFusion couples the modalities bidirectionally [20]. None099
of these approaches addresses inter-vehicle occlusion or100
bandwidth constraints in multi-agent settings. Exploiting101
radar Doppler within a cooperative framework therefore re-102
mains largely open.103

2.3. Collaborative-Perception Datasets104

A comprehensive review of V2X datasets is provided105
in [29]. OPV2V [25] and AdverCity [8] supply simulated106
LiDAR–camera data in CARLA, whereas DAIR-V2X [30]107
offers real-world LiDAR–camera recordings. V2X-R [7]108
introduces cooperative radar but omits per-point Doppler109
and mounts only a front-facing sensor, limiting motion anal-110
ysis and 360° coverage.111

Summary. Current methods either broadcast full feature112
maps for high accuracy or reduce bandwidth with loosely113
guided sparsity. They overlook occlusion recovery, vi-114
tal for both perception completeness and efficient collab-115
oration, and under-utilise radar in multi-agent contexts,116
partly due to the lack of suitable public datasets. By117
contrast, SlimComm combines Doppler-aware, occlusion-118
guided queries with LiDAR–radar cooperation to improve119
the accuracy–bandwidth trade-off.120

LiDARCamera Radar

Figure 1. Sensor-suite configuration for each CAV. The six-radar
setup is designed to provide full 360◦ Doppler velocity coverage,
with three radars covering the front, one the rear, and two moni-
toring adjacent lanes.

3. Dataset 121

To address the gap in publicly available V2X benchmarks 122
and to properly evaluate multi-agent models that fuse 4- 123
D radar, we introduce radar-augmented versions of the 124
OPV2V [25] and Adver-City [8] datasets. Our goal is to 125
benchmark models that leverage point clouds enriched with 126
Doppler velocity under a variety of driving conditions. 127

3.1. Dataset Creation 128

OPV2V covers generic urban traffic with diverse inter- 129
section types, occlusion patterns and flow densities [25]. 130
Adver-City instead concentrates on crash-relevant situa- 131
tions derived from real accident statistics, including com- 132
plex junctions and rural roads with restricted sight lines [8]. 133
By equipping both suites with an identical sensor package 134
we enable consistent evaluation of radar-enhanced percep- 135
tion across complementary scenarios. 136

OPV2V-R and Adver-City-R are generated with the 137
same CARLA [4] and OpenCDA [24] pipeline, recorded 138
at 10Hz, and annotated with fully compatible 3-D bound- 139
ing boxes. For Adver-City-R we select the ClearDay 140
weather profile, remove roadside units, and harmonise ve- 141
hicle classes with OPV2V-R (e.g. no micro-cars). Pedes- 142
trian labels are retained but can be ignored during training 143
to match OPV2V-R. Fig. 2 shows that both datasets have 144
a median of ≈ 2 neighbouring CAVs per frame. OPV2V- 145
R exhibits a broader tail (up to five neighbours), whereas 146
Adver-City-R is more narrowly distributed. 147

Each CAV carries RGB cameras, a LiDAR, GNSS/IMU, 148

Sensor Specification
4× Camera RGB, 800 × 600, 110° FOV
1× LiDAR 64 ch., 1.3 M pts/s, 120 m, –25°–2° vert. FOV, 0.02 m noise, 20 Hz
6× Radar 0.06 M pts/s, 150 m, 120° horiz. FOV, 30° vert. FOV
GPS/IMU GNSS alt. noise 0.001 m; IMU heading 0.1°, speed 0.2 m/s

Table 1. Sensor-suite configuration.
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Figure 2. Number of neighbouring CAVs (≤70 m) per frame.

and six simulated radars that output XYZ coordinates and149
Doppler velocity (see Tab. 1 for specifications and Fig. 1150
for mounting positions). Cameras provide 360° coverage;151
the LiDAR is roof-mounted; three radars cover the front152
bumper, one the rear, and two under the side mirrors look153
backward to monitor adjacent lanes.154

To our knowledge, no publicly available V2V dataset155
yet provides synchronised radar XYZ + Doppler for multi-156
agent perception.1157

4. Method158

4.1. Overall Architecture159

Fig. 5 outlines the end-to-end cooperative-perception160
pipeline. Each agent first feeds voxelised LiDAR and radar161
data into a shared Encoder, producing multi-scale feature162
tensors {Fi,l∈RCl×Hl×Wl}.163

Alongside these features, the encoder outputs three se-164
mantic priors (see Sec. 4.2): a Dynamic Map Di, a Confi-165
dence Map Ci, and a Foreground Density Map Vi. These166
maps guide the Ego Query Generator(see Sec. 4.3), which167
converts the down-sampled Di,l and168

Each neighbour consults its own density map Vj to de-169
cide whether to participate, thereby filtering out uninforma-170
tive links and reducing bandwidth. Agents that opt in return171
halo-enriched features {Hj→i,l} (see Sec. 4.4). These re-172
sponses are merged by the Gated Multi-Scale Deformable173
Fusion module into per-scale fused features {F̃i,l}, which174
are then aggregated across scales to form a unified BEV ten-175
sor S̃i. A lightweight detection head operating on S̃i pro-176
duces the final 3-D predictions. Overall, the framework se-177
lects only informative collaborators and integrates comple-178
mentary observations into a compact BEV representation,179
achieving accurate yet bandwidth-efficient cooperative per-180
ception.181

4.2. Encoder182

Backbone. As shown in Fig. 3, following PointPillars [9],183
LiDAR and radar point clouds are pillarised into BEV ten-184
sors Li and Ri, concatenated, and fed to a ResNet BEV185

1A real-world V2X-Radar dataset has been reported in [27], but the
data were not released at the time of writing.

PointPillar                     

ResNet Backbone                 

OutputOutput

Output
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Figure 3. Encoder overview. LiDAR–radar pillars are concate-
nated in BEV space and processed by a ResNet backbone, which
outputs a feature pyramid and three semantic priors.

backbone [5]. The backbone yields multi-scale features 186
{Fi,l} and a high-resolution map Si. A classification head 187
along with sigmoid and channel-wise max operating on Si 188
produces the confidence map Ci ∈ [0, 1]H×W . The next 189
two subsections detail the auxiliary priors used later for 190
query generation and collaborator selection. Ci,l into sparse 191
query locations {Qi→j,l} for deformable attention. Before 192
feature exchange, the ego agent transmits its query locations 193
to neighbouring agents through the Communicator. 194

4.2.1. Dynamic Map 195

Radar Doppler information is converted into a binary mo- 196
tion mask after ego-motion compensation. Let vveh

i be the 197
ego velocity of vehicle i in its own frame. For the k-th radar 198
on that vehicle, the velocity in radar coordinates is 199

vveh
i,k = Ri,k v

veh
i , (1) 200

with Ri,k the extrinsic rotation matrix. 201
The measured Doppler velocity for point n is 202

vDoppler
i,k,n =

(
vabs
i,k,n − vveh

i,k

)
·ui,k,n, (2) 203

where ui,k,n = pi,k,n/∥pi,k,n∥ is the line-of-sight unit vec- 204
tor. Re-arranging gives the compensated radial velocity 205

vradial
i,k,n = vDoppler

i,k,n + vveh
i,k ·ui,k,n. (3) 206

Static
Vehicle

Figure 4. Top: Raw point cloud with GT bounding boxes. Bot-
tom: Dynamic Map. All dynamic vehicles are captured as dy-
namic grids (black), while the two static vehicles are correctly ex-
cluded from dynamic regions.
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A BEV cell is marked dynamic if any radar point inside207
it satisfies |vradial

i,k,n| > vth, with vth = 1.0 m/s. This yields208

the binary Dynamic Map Di ∈ {0, 1}H×W . Fig. 4 demon-209
strates that the dynamic map reliably distinguishes moving210
and static objects, achieving precise dynamic–static separa-211
tion.212

4.2.2. Foreground Density Map213

The Foreground Density Map highlights informative re-214
gions by combining height-based foreground masking with215
point density.216

Foreground masking. Using thresholds Tlower = −1.2217
m, Tupper = 0 m, and Tmax = 1.0 m, a cell is background if218
it contains (i) any point above Tmax (tall static structures),219
or (ii) all points outside [Tlower, Tupper] (ground or noise).220
Foreground masks from LiDAR and radar are combined via221

FGi = FGL
i ∨ FGR

i . (4)222

Density scaling. Point counts Np
i are normalised by the223

pillar capacity Nmax:224

DSi = Np
i /Nmax. (5)225

Final map. The Foreground Density Map is the element-226
wise product227

Vi = FGi ⊙DSi. (6)228

It suppresses empty or background cells while retaining229
dense foreground evidence, and is later used for collabo-230
rator selection.231

4.3. Ego Query Generator232

To minimise communication overhead, the query genera-233
tor produces a sparse set of reference points focused on the234
most informative regions of the scene. As shown in Fig. 6,235
it runs per scale in two stages, yielding Heuristic Reference236
Points (HRP) for refining visible objects and Exploratory237
Reference Points (ERP) for probing occluded areas.238

Heuristic Branch. This branch focuses on regions that al-239
ready exhibit strong object evidence. For each scale l, the240
dynamic and confidence maps are down-sampled, Di →241
Di,l and Ci→Ci,l, and HRP locations are drawn from two242
candidate pools:243

1. every grid cell flagged as dynamic in Di,l;244
2. the highest-scoring cells in Ci,l that are not in Pool 1,245

selected until the per-scale budget Nr
l is met.246

The resulting set, Rh
i,l ∈ RNr

l ×2, stores BEV coordinates247

(u, v). Embeddings Eh
i,l ∈ RNr

l ×Cl are obtained by bilin-248
early sampling the ego BEV feature map, yielding a rich,249
context-aware starting point for object refinement.250

Exploratory Branch. Occlusions often hide critical ob- 251
jects; this branch explicitly seeks them. 252
1. Occluder identification. Significant peaks in the confi- 253

dence map are extracted as occluder centroids, 254

Co
i,l = MaxPool3×3(Ci,l) ∧ Ci,l, (7) 255

where ∧ denotes element-wise logical AND. Border pix- 256
els are first masked out to suppress artificial edges. A 257
per-scene percentile threshold is then applied. 258

2. Shadow sampling. For each centroid, a shadow ERP 259
is placed at a stochastic, biased offset, forming Re

i,l ∈ 260

RNr
l ×2 (see Fig. 6). 261

3. Contextual embedding. Each ERP embedding concate- 262
nates three signals: (i) the occluder’s BEV feature, (ii) 263
the 2-D shadow offset, and (iii) a scale-specific learn- 264
able exploration token tl. The token tl ∈ RCl is a single 265
parameter vector shared by all ERPs at level l, initialised 266
with Xavier normal noise and updated end-to-end dur- 267
ing training. The concatenated vector is passed to a two- 268
layer MLP, yielding Ee

i,l ∈ RNr
l ×Cl . 269

Query aggregation. For each scale l, we concatenate the 270
HRP and ERP into an anchor set 271

Ai,l = RH
i,l ∪RE

i,l, |Ai,l| = 2Nr
l . (8) 272

Two-stage offset strategy. A lightweight MLP predicts 273
one coarse 2-D offset for every anchor, forming the nudged 274
centres Ãi,l = Ai,l +Oi,l. 275

Query-offset regularisation. To prevent the HRP and 276
ERP branches from collapsing into identical behaviour, we 277
introduce an auxiliary loss that encourages exploratory off- 278
sets to be larger than heuristic ones by a scale-dependent 279
margin δl. Let OH

i,l and OE
i,l denote the two offset subsets; 280

the loss reads 281

Loffset =
∑
l

[
δl −

(
E∥OE

i,l∥2 − E∥OH
i,l∥2

)]
+
, (9) 282

with [·]+ the ReLU and δl the average occluder-to-shadow 283
distance at that scale. This term is added to the main de- 284
tection objective with a dynamic weight proportional to the 285
primary PointPillar detection loss value. 286

Fine sampling. Each nudged centre ã ∈ Ãi,l is passed 287
to Deformable Attention, which predicts a learnable 3 × 3 288
halo (npoints = 9) of fine offsets, yielding the final sampling 289
locations used to gather collaborators features. The final set 290
of sampling locations used to gather collaborator features is 291
then given by: 292

Qi, l = ã+∆fineh, p | ã ∈ Ãi, l, ∀h, p. (10) 293

The two-stage design lets the network first learn a global 294
(coarse) correction and then a local, detail-oriented sam- 295
pling pattern (fine) without incurring additional bandwidth. 296

297

4



ICCV
#*****

ICCV
#*****

ICCV 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Shared
Encoder

Multi-Scale Features
Confidence Map

Query Location
Dynamic Map

Foreground Density Map
Shared Halo Features

Fused Multi-Scale Features

Fused Spatial Feature

Ego Query
Generator

Multi-Scale
Deformable

Fusion

Detection
Head

Shared
Encoder Communicator

Multi-Scale
Aggregation

  Point Clouds of
Ego Agent 

  Point Clouds of
CAV Agent 

 

 

 

Halo Feature Construction
Query Embedding

 

where:                          denotes scale level

Figure 5. End-to-end cooperative perception. Each agent voxelises its LiDAR–radar points and runs a shared encoder that outputs multi-
scale features and three semantic priors (dynamic, confidence, density). The Ego Query Generator uses those priors to emit sparse
queries, neighbours respond with halo-enriched features, and a gated deformable fusion module merges everything into a BEV tensor
for detection.
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Figure 6. Exploratory reference points are placed behind occluder
centroids at a learned distance and lateral bias.

4.4. Communicator298

To enable efficient and adaptive multi-agent perception, the299
module first selects collaborators and then transmits only300
sparse, halo-enriched features that are spatially aligned with301
the ego’s query locations.302

Collaborator Selection. Prior to feature exchange, the303
ego broadcasts its query locations Qi,l and global pose to304
neighbouring agents. Because these queries are defined in305
the ego coordinate frame, each candidate agent j warps306
its Foreground Density Map Vj into that frame, yielding307
Vj→i. An agent becomes a collaborator whenever at least308
one query lands on a BEV cell whose warped foreground309
density exceeds the communication threshold:310

max
(u,v)∈Qi,l=0

Vj→i(u, v) > τcom, (11)311

where (u, v) are BEV grid indices. The test is performed312
only at the finest scale l=0, whose higher resolution cap-313
tures the most detailed occupancy information.314

Halo-enriched Sparse Feature Encoding. Most exist-315
ing methods [6, 14, 25, 28] perform early-stage projec-316
tion: they first transform every CAV’s point cloud into the317
ego frame and then learn all subsequent features there. In318
real-time V2X, however, a vehicle may connect to several319

neighbours; repeatedly transforming and processing identi- 320
cal point clouds in multiple coordinate frames quickly be- 321
comes computationally prohibitive. Some methods [12, 15] 322
sidesteps this by extracting features in each agent’s own 323
frame and warping them into collaborators’ frames. 324

Following the feature warping strategy adopted in prior 325
works, we introduce halo enrichment: Each collaborator 326
first warps its multi-scale feature maps {Fj,l} into the ego 327
frame, then augments every grid cell with the features of 328
its 3×3 neighbourhood, concatenated along the channel 329
dimension. This enriches the spatial context for subse- 330
quent deformable attention, reducing the impact of limited 331
sampling density and providing robustness against the mi- 332
nor pixel-level misalignments that can occur during feature 333
warping. 334

Finally, only the halo-enriched features at the ego agent’s 335
query locations are transmitted, {Hj→i,l ∈ RNq

l ×9Cl}, pro- 336
viding semantically rich yet bandwidth-efficient inputs for 337
cross-agent fusion. 338

4.5. Gated Multi-Scale Deformable Fusion 339

After halo-enriched, sparse features arrive from the selected 340
collaborators, fusion proceeds in three steps: Step 1: CAV 341
aggregation, Step 2: deformable cross-attention, and Step 342
3: gated residual blending. 343

Step 1 — CAV aggregation. For each scale l, features 344
from the N participating CAVs are averaged: 345

HCAV
i,l =

1

N

N∑
j=1

Hj→i,l (12) 346

We use simple averaging as a robust, parameter-free base- 347
line to create a consensus representation, which prevents 348
any single noisy collaborator from dominating the fused 349
feature. 350
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Step 2 — Deformable cross-attention. The ego’s query351
embeddings Ei,l, query locations Qi,l, and the aggre-352
gated tensor HCAV

i,l are passed to a multi-head deformable-353
attention module [32]. Each query samples its reference354
point and learned offsets, producing fused query features355
that are scattered back to the BEV grid:356

F CAV
i,l = Scatt

(
DeAttn

(
Ei,l,Qi,l,H

agg
i,l

)
,Qi,l

)
(13)357

with untouched cells filled with zeros.358

Step 3 — Gated residual blending. Because F CAV
i,l and359

the ego features Fi,l come from different distributions, a360
spatial gate modulates their mixture:361

F̃i,l = (1−Gi,l)⊙ Fi,l +Gi,l ⊙ F CAV
i,l (14)362

where363

Gi,l = σ
(
Conv1×1

[
Fi,l ∥F CAV

i,l

])
∈ [0, 1]Cl×Hl×Wl

(15)364
Here ∥ denotes channel concatenation, σ is the sigmoid,365
and ⊙ is element-wise multiplication. The 1×1 convolu-366
tion learns to emphasise useful collaborative cues. The ra-367
tional behind using a gating mechanism is that the aggre-368
gated CAV features F CAV

i,l and the original ego features Fi,l369
originate from different sources and exhibit distinct distri-370
butions. Directly adding them may disrupt feature con-371
sistency. The gating network learns to adaptively balance372
these two streams, suppressing noise and highlighting use-373
ful fused content.374

Multi-scale aggregation and detection. The collection375
{F̃i,l} is forwarded to the same ResNet aggregation block376
used in the encoder (Sec. 4.2), producing a unified BEV ten-377
sor S̃i. A PointPillars detection head then processes S̃i to378
generate the final 3-D predictions.379

5. Experiment380

5.1. Experimental Setup381

Our experiments are conducted on the Adver-City-R and382
OPV2V-R datasets, as introduced in Sec. 3.1. The vox-383
elization settings include a grid size of (0.4 m, 0.4 m, 4 m),384
a maximum of 32 points per voxel, and a communication385
range of 70 m. The detection area is defined as a cuboid386
with dimensions 281.6 m (length), 80 m (width), and 4 m387
(height), with each vehicle located at the center of its own388
detection region.389

For our model, we adopt the Adam optimizer with a390
learning rate of 0.002, a weight decay of 1 × 10−4, and an391
epsilon value of 1×10−10. Gradient clipping is applied with392
a maximum norm of 1. A MultiStep learning rate scheduler393

is used with a decay factor γ = 0.1, and learning rate drops 394
scheduled at epochs 10 and 15. 395

We use three scales for cross-agent fusion. The 396
corresponding feature map shapes are (128, 100, 352), 397
(256, 50, 176), and (512, 25, 88), respectively. The num- 398
ber of reference points per scale is set to 200, 100, and 50 399
for each query generator branch. Each reference point is as- 400
sociated with 9 learnable offsets and 4 attention heads. Off- 401
sets that fall on the same location are only transmitted once. 402
Occluder centroids are selected with percentile thresholds 403
pl∈{0.5, 0.5, 0.5} . 404

We adopt the PointPillars detection loss—focal loss for 405
classification (α = 0.25, γ = 2.0) and smooth-L1 re- 406
gression on the 7-D bounding box with λbox = 2.0—and 407
augment it with an offset-regularization term (see Sec. 4.3). 408
The auxiliary loss is weighted at 0.1× the current detection 409
loss and uses an adaptive margin δl proportional to the aver- 410
age occluder-to-shadow distance at each scale. This encour- 411
ages the exploratory branch to learn larger offsets than the 412
heuristic branch, ensuring the two branches maintain dis- 413
tinct behaviours. 414

All baseline methods are trained using their original con- 415
figurations, including batch sizes, optimizers, projection 416
strategy, and learning rates. Since no existing method sup- 417
ports LiDAR-Radar fusion for cooperative perception, we 418
implement the same encoder as our model (introduced in 419
Sec. 4.2) for them to ensure a fair comparison. Specifically, 420
a radar voxel feature encoder (VFE) branch is added, and 421
the resulting radar pillar features are concatenated with the 422
LiDAR features before being passed to their corresponding 423
backbones. All models are trained on two RTX 3090 GPUs. 424

5.2. Quantitative Evaluation 425

To evaluate our proposed framework, we benchmark its per- 426
formance against several leading collaborative perception 427
methods. Tab. 2 shows the detection performance across 428
two distinct data splits designed to test the model under 429
varying levels of environmental complexity. The Dense sce- 430
narios in AdverCity feature a 2.67x increase in the number 431
of vehicles compared to the Sparse scenarios, thereby sig- 432
nificantly amplifying the degree of occlusion [8]. 433

5.2.1. Bandwidth Measurement 434

During evaluation, each collaborator transmits only its non- 435
zero feature values; zeros are skipped via sparse encoding. 436
As stated in our experimental setup, these evaluations are 437
performed with neither feature compression nor band- 438
width limits applied to ensure a fair and direct comparison 439
of algorithmic efficiency. 440

Therefore, the payload for each transmitted feature is its 441
full float32 size (4 bytes). The total payload for a given 442
scene s is Bs = 4

∑
l Ns,l [bytes], and the average band- 443

width reported in our results is MB [MB/frame]. This met- 444
ric represents the raw, uncompressed data payload required 445
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by the algorithm before any quantization or channel-specific446
encoding would be applied in a real-world deployment.

Adver-City-R

Method AP@0.5↑ AP@0.7↑ CV↓ BD↓G. / S. / D. G. / S. / D.

AttFusion [25] 0.64 / 0.69 / 0.63 0.47 / 0.54 / 0.46 19.28 13.47
S-AdaFusion [14] 0.66 / 0.71 / 0.65 0.54 / 0.59 / 0.52 19.52 16.14

SCOPE [26] 0.23 / 0.17 / 0.24 0.14 / 0.13 / 0.14 18.78 9.43
Where2Comm [6] 0.47 / 0.47 / 0.47 0.23 / 0.33 / 0.29 18.30 6.20
SlimComm (Ours) 0.67 / 0.72 / 0.65 0.54 / 0.63 / 0.52 14.97 1.13

OPV2V-R

Method AP@0.5↑ AP@0.7↑ CV↓ BD↓

AttFusion [25] 0.89 0.80 19.29 6.72
S-AdaFusion [14] 0.91 0.85 20.47 16.35

SCOPE [26] 0.73 0.66 18.59 4.75
Where2Comm [6] 0.86 0.77 18.74 4.45
SlimComm (Ours) 0.87 0.80 16.07 0.63

Table 2. Detection performance (AP@0.5 / AP@0.7), communi-
cation volume (CV, measured in log2 scale), and bandwidth us-
age (BD, in MB/frame) across methods at General scenarios. Ad-
verCity results are split into General (G.), Sparse (S.), and Dense
(D.) scenarios.

447
As shown in Tab. 2, SlimComm consistently achieves a448

superior balance between detection performance and com-449
munication efficiency across both benchmarks. On Adver-450
City-R, which is characterized by more complex scenarios451
with a higher average number of neighboring vehicles per452
scene, SlimComm delivers state-of-the-art precision. The453
increased vehicle density and resulting occlusions cause454
the query-generation mechanism to adaptively increase its455
bandwidth usage to 1.13 MB to gather the necessary infor-456
mation. This is particularly effective in the Dense scenar-457
ios, where methods like Where2Comm and SCOPE, lack-458
ing semantic prior guidance, fail to capture critical occluded459
regions. In contrast, SlimComm’s occlusion-aware ERP460
mechanism successfully identifies these areas, matching the461
accuracy of data-intensive methods while remaining highly462
efficient.463

This efficiency is further highlighted on the OPV2V-464
R dataset, which has fewer vehicles on average in its test465
scenarios. Here, SlimComm’s performance remains highly466
competitive with top-tier methods while requiring only 0.63467
MB of bandwidth—an approximate 7x reduction com-468
pared to the next most efficient method (Where2Comm469
at 4.45 MB). This demonstrates that SlimComm’s query-470
based strategy successfully adapts to scene complexity, pre-471
serving high-quality perception while drastically cutting472
communication overhead and proving its viability for real-473
world, bandwidth-constrained applications.474

5.3. Ablation Studies475

Impact of Different Components. We conduct ablation476
studies to evaluate the contribution of each component in477
our framework, as shown in Tab. 3. On Adver-City-R,478

introducing the exploratory branch improves the AP@0.5 479
from 0.58 to 0.61 and AP@0.7 from 0.41 to 0.49, demon- 480
strating the benefit of explicitly exploring occluded or un- 481
certain areas. Further incorporating the halo-enrichment 482
mechanism brings an additional performance gain, reach- 483
ing AP@0.5 of 0.67 and AP@0.7 of 0.54, which confirms 484
that using spatial context is an effective strategy to mitigate 485
feature warping distortion and sample sparsity. On OPV2V- 486
R, a similar trend is observed.

Module Adver-City-R OPV2V-R

HRP ERP HE AP@0.5↑ AP@0.7↑ AP@0.5↑ AP@0.7↑

✓ 0.58 0.41 0.83 0.73
✓ ✓ 0.61 0.49 0.83 0.76
✓ ✓ ✓ 0.67 0.54 0.87 0.80

Table 3. Ablation study on different module combinations. HRP:
Heuristic Branch in Query Generator, ERP: Exploratory Branch in
Query Generator, HE: Halo-enrichment

487

Impact of Reference Points. An ablation study was con- 488
ducted to investigate how the number of queries affects 489
performance and communication cost, as shown in Tab. 4. 490
These queries are initialized from a set of reference points 491
derived from semantic priors. Using a minimal set of (50, 492
25, 15) reference points per scale leads to the lowest detec- 493
tion accuracy, indicating insufficient coverage of critical ob- 494
ject and occlusion regions. Increasing the number to (100, 495
50, 25) and further to the default setting of (200, 100, 50) 496
progressively improves both AP@0.5 and AP@0.7. This 497
confirms the trade-off between accuracy and bandwidth: 498
while more queries enhance perception quality, they also 499
increase communication cost. Considering this balance, the 500
(200, 100, 50) setting was adopted for our main experi- 501
ments.

Adver-City-R

RP AP@0.5↑ AP@0.7↑ CV↓ BD↓

(50, 25, 15) 0.59 0.48 12.81 0.29
(100, 50, 25) 0.61 0.48 14.22 0.65
(200, 100, 50) 0.67 0.54 14.97 1.13

Table 4. Ablation study on the number of Reference Points (RP)
per scale used in the query generator. A higher number of queries
improves accuracy (AP) at the cost of increased communication
volume (CV) and bandwidth (BD).

502

Impact of Communication Threshold. To analyze the 503
effectiveness of the collaborator selection mechanism, an 504
ablation study was performed on the communication thresh- 505
old τcom, as shown in Tab. 5. This threshold determines 506
the minimum foreground density required for a neighbor- 507
ing agent to respond to a query. 508

7



ICCV
#*****

ICCV
#*****

ICCV 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

As the threshold increases from 0 to 0.75 on the OPV2V-509
R dataset, there is a clear trade-off between accuracy and ef-510
ficiency. A stricter threshold filters out more potential col-511
laborators, leading to a steady decrease in communication512
volume (CV) and bandwidth (BD). However, this reduc-513
tion in communication comes at the cost of lower detection514
accuracy, as potentially valuable information is discarded.515
The setting of τcom = 0 (used in our main experiments)516
was chosen to strike a balance, effectively pruning uninfor-517
mative links without significantly compromising perception518
quality.519

OPV2V-R

τcom AP@0.5↑ AP@0.7↑ CV↓ BD↓

0 0.87 0.80 16.07 0.63
0.25 0.85 0.76 15.53 0.61
0.5 0.84 0.75 13.15 0.52
0.75 0.83 0.73 9.72 0.38

Table 5. Ablation study on the communication threshold (τcom).
A higher threshold reduces communication but can also decrease
detection accuracy. Our default setting is τcom = 0.

6. Limitations and Future Work520

Although SlimComm advances bandwidth-aware cooper-521
ative perception, several avenues remain open for explo-522
ration. A critical next step is real-world validation. All523
current experiments rely on CARLA simulation because no524
public multi-agent radar dataset with per-point Doppler is525
yet available. The SlimComm framework will be re-trained526
and evaluated as soon as such data are released (e.g., the527
forthcoming V2X-Radar [27]).528

A key challenge in transitioning from simulation to the529
real world is handling errors from communication delay and530
imperfect localization. The current design does not account531
for these, nor for the feature warping misalignment they532
cause. Future work must mitigate these issues by intro-533
ducing synchronization mechanisms, pose refinement mod-534
ules, and feature alignment techniques such as spatial cross-535
attention or offset correction. The inherent robustness of the536
halo-enrichment strategy against minor pixel-level warping537
errors will also be investigated.538

To improve the realism of simulations in the interim,539
pursuing higher-fidelity radar simulation is planned. The540
present simulator approximates multipath and ghost targets;541
the intention is to incorporate more advanced simulation en-542
gines, such as the C-Shenron radar engine [17], to model543
these artefacts more faithfully and to release an updated544
OPV2V-R+ split with the richer sensor physics.545

Further research will also focus on algorithmic enhance-546
ments. The current LiDAR-radar fusion strategy uses a547
simple concatenation approach; given their distinct distribu-548
tions, a more advanced fusion method should be researched.549

Similarly, the framework’s query count is fixed a priori. A 550
learned scheduler that implements an adaptive query budget 551
based on scene complexity or link congestion could further 552
reduce average bandwidth. For scenarios where Doppler is 553
unavailable, a Doppler-free fallback using optical flow or 554
LiDAR scene-flow surrogates will be investigated. 555

Looking at broader applications, occlusion-aware 556
queries are also valuable for motion forecasting. Extend- 557
ing SlimComm to jointly detect and predict trajectories is 558
a promising next step. Finally, while sparse queries reveal 559
less scene detail than full maps, they still leak location cues. 560

Addressing these directions, with a primary focus on 561
real-world validation and robustness to localization errors, 562
aims to turn SlimComm into a deployable, real-time module 563
for next-generation V2X perception systems. 564

7. Conclusion 565

We presented SlimComm, a proactive, query-driven frame- 566
work that unites LiDAR and 4-D radar for bandwidth- 567
efficient cooperative perception. Guided by motion-centric 568
and confidence-based priors, SlimComm drops sparse 569
queries on dynamic objects and occlusion shadows, prompt- 570
ing neighbours to return only the most informative BEV 571
features. A gated multi-scale deformable-attention block 572
then fuses ego and halo-enriched neighbour features. 573

Experiments on the new OPV2V-R and Adver-City-R 574
benchmarks show that SlimComm matches full-map shar- 575
ing while transmitting just ∼10 % of the data, and it consis- 576
tently outperforms prior sparse-communication baselines. 577
All code, datasets and our radar-simulation toolbox will be 578
released to foster reproducible research. 579

Remaining challenges, including richer LiDAR–radar 580
coupling, delay-aware fusion, and real-world evaluation, 581
are detailed in Section 6. Addressing them will move Slim- 582
Comm closer to deployment in next-generation V2X per- 583
ception systems. 584
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