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Abstract

Vision Foundation Models (VFMs) have become a de facto
choice for many downstream vision tasks, like image classi-
fication, image segmentation, and object localization. How-
ever, they can also provide significant utility for downstream
3D tasks that can leverage the cross-modal information
(e.g., from paired image data). In our work, we further ex-
plore the utility of VFMs for adapting from a labeled source
to unlabeled target data for the task of LiDAR-based 3D
semantic segmentation. Our method consumes paired 2D-
3D (image and point cloud) data and relies on the robust
(cross-domain) features from a VFM to train a 3D backbone
on a mix of labeled source and unlabeled target data. At
the heart of our method lies a fusion network that is guided
by both the image and point cloud streams, with their rela-
tive contributions adjusted based on the target domain. We
extensively compare our proposed methodology with differ-
ent state-of-the-art methods in several settings and achieve
strong performance gains. For example, achieving an aver-
age improvement of 6.5 mIoU (over all tasks), when com-
pared with the previous state-of-the-art.

1. Introduction

In an ideal world with abundant resources, we could po-
tentially manually label all the distributions present in our
visual world and train neural networks to perform robustly
across diverse environments. The success of supervised
training is well-known and has been extensively studied
in the literature [16, 29, 50]. However, in the real world,
the concept of abundance is usually non-existent. Instead,
we face several constraints – monetary, time, or human re-
sources, among others – that demand we employ all the
available resources optimally.

Efficiency and cost reduction become even more critical
in domains like autonomous driving, where vehicles ideally
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Figure 1. (a) Cross modal learning with frozen 2D (VFM) back-
bone features using a learned fusion representation. Fusion net-
works can lead to a suboptimal feature utilization and unwanted
modality bias on the target domain. Therefore, we propose reg-
ularizing the fusion by the most effective modality in a certain
environment (e.g., based on lighting conditions). (b) mIoU Com-
parison of xMUDA with different fusion variants and Ours on
NuScenes: USA → Singapore.

need to operate safely in a range of environments (i.e., data
distributions). Labeling data for each of these distributions,
particularly for dense prediction tasks like 3D semantic seg-
mentation, can quickly become prohibitively expensive due
to the need for per-point or per-voxel annotations.

3D Unsupervised Domain Adaptation (UDA) offers a
practicable solution by focusing on adapting a neural net-
work trained in a supervised manner on a labeled source
domain to an unlabeled target domain. This approach lever-
ages information from annotated 3D (source) data to ad-
dress the variability across domains without requiring man-
ually annotated labels from each new target domain. This
paper builds on the principles of 3D domain adaptation,
aiming to bridge the gap between labeled and unlabeled 3D
environments, particularly addressing challenges inherent
in dense 3D prediction tasks, related to fine-grained under-
standing of the 3D scene.

Ideally, an autonomous vehicle can employ cues from
both the 2D and 3D data. Although different modalities,
they can offer complimentary cues that can enhance the per-
ception abilities of autonomous driving systems. Jaritz et



al. [19] proposed a seminal work on using the complimen-
tary information from the two modalities for the task of 3D
domain adaptation for semantic segmentation. This method
inspired a set of subsequent works [7, 43, 45], which com-
bine data from different domains on a similar multi-modal
design. However, these approaches usually rely on training
a 2D feature extractor separately, thus, requiring dis-joint
training of 2D and 3D backbones, increasing the computa-
tion cost significantly as compared to uni-modal setups.

In our work, motivated by the recent strong improve-
ments offered by vision foundation models (VFM) on dense
prediction tasks [34, 39], we tackle the multi-modal 3D-
UDA task by employing these powerful models. However,
leveraging these VFMs (e.g., [39]) effectively for cross-
modal learning for 3D UDA comes with the problem of
optimally fusing the information from both modalities. To
address this, at the heart of our approach lies a fusion refine-
ment network, which fuses the information obtained from
2D and 3D modalities into a combined representation.

Although such fusion schemes are studied in [18, 24],
our experiments show that training these fusion methods
can lead to an over-reliance on features that perform well
on the source domain but fail to adapt to the target do-
main. Moreover, despite the growing popularity of multi-
modal feature fusion, few works have focused on designing
fusion modules that specifically address modality-specific
challenges that for example arise under degrading weather
and low light conditions [4].

To address this issue, we propose to adaptively regu-
larize the fusion network based on a simple intuition: in
some environments, the imaging modality may be more ro-
bust while in others, reliance on the 3D modality may be
more beneficial. To this end, we guide the fusion refine-
ment network through adaptive predictive distillation from
each modality, based on environmental factors (e.g., light-
ing conditions). This regularization effectively promotes
learning to select the modality to rely on, thereby enabling
more robust multi-modal domain adaptation. An overview
of our approach is also laid out in Figure 1. We evalu-
ated our proposal on the four common DA tasks, showing
improved performance over traditional (fusion) methods,
achieving SOTA or comparable performance on all tasks
without requiring the training of an additional 2D encoder.

2. Related Work
Our method is related to works that study UDA for 3D se-
mantic segmentation, VFMs, and approaches that propose
different fusion schemes for cross-modal learning.
UDA for 3D Semantic Segmentation. UDA for 3D se-
mantic segmentation has been extensively studied in recent
years.

A major group of methods can be categorized as learning
domain-invariant feature representations. Earlier works in

3D UDA focused on minimizing statistical feature discrep-
ancies [33, 42]. Next, adversarial training is another widely
used approach to learn invariant representations [2, 13, 49].
Another line of research utilizes self-supervision to learn
more domain invariant representations by constructing a
label-free auxiliary optimization goal that is often modality
specific [31, 48]. Domain mapping approaches can be seen
as another high level category to handle domain shifts, in
which the target domain is transferred to the source domain
[10, 17]. Other approaches include model adaptation via
adapting batch normalization statistics [25, 31, 32], pseudo-
labeling [23] or self-ensembling [22].

In multimodal DA, techniques are characterized by per-
forming adaptation across modalities. xMUDA [18] is
a seminal work that introduces a dual classification head
structure for predictive feature alignment across the 2D
and 3D modalities and serves as the fundament for many
works on 3D UDA cross-modal semantic segmentation.
MM2D3D [7] extends the work by adding 3D depth to the
2D encoder, showing significant performance improvement.
DsCML [35] proposes sparse-to-dense feature matching,
aligning 3D point features with a dynamically selected 2D
region. Further, they propose cross-modal adversarial learn-
ing to narrow the domain gap, which was also employed
by Liu et al. [27]. Xing et al. [46] propose a neighbor-
hood feature aggregation network and the usage of con-
trastive learning for feature alignment. Zhang et al. [51]
propose modality-exclusive self-supervised learning tasks
for the 2D and 3D branches to improve the exploitation of
modality-specific characteristics. In this work, we propose
a method to further enhance the 2D-3D DA capabilities en-
abled by VFMs. Distinct from others, we design a three-
stream network architecture composed of 2D, fusion, and
3D branches, where the single-modality streams guide the
fusion branch adaptively.

Vision Foundation Models (VFMs). Vision Foundation
Models, such as CLIP [38], DINO [8], and SAM [21], rep-
resent general-purpose frameworks trained on large-scale
visual data, capable of performing a wide range of tasks, in-
cluding image classification, object detection, segmentation
and even cross-modal applications. Prior works such as Vi-
sion Transformer (ViT) [11] laid the groundwork by demon-
strating how transformer-based architectures could rival
CNNs in vision tasks when trained on large datasets. Mod-
els like CLIP [38] and ALIGN [20] exploited multi-modal
capabilities showing impressive performance by learning
from paired text-image data. DINO [8] and BEiT [1] re-
fined the application of self-supervised learning in vision,
achieving high accuracy without the need for labeled data.
AM-RADIO [39] distills a unified efficient backbone from
multiple foundation models (in a teacher-student learning
framework) which outperforms its teachers across several
downstream tasks.
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Figure 2. Our architecture for the cross-modal learning consists of a Vision Foundation Model (VFM) as the 2D encoder and a 3D
SparseConvNet as the 3D encoder. We use multiple main task heads of semantic segmentation and mimicry task heads for cross-modal
alignment. Besides the 2D branch (green) and 3D branch (blue), we employ a fusion branch (purple) where we concatenate the 2D and
3D feature as the fusion feature. The network is trained with the supervised loss Lseg, and the self-supervised cross-modal learning losses
Lalign (the fusion branch guiding the 3D branch) and Lguide (the fusion branch guided by the 2D or 3D branch).

Recently, works on DA leveraging VFMs have demon-
strated strong performance for the task of 3D UDA [6, 36,
47]. Approaches to exploit VFMs can be roughly divided
into works that exploit feature distillation, predictive dis-
tillation, and mask priors. Peng et al. [36] apply feature
distillation via cosine similarity. In addition, they utilize the
masking capabilities of SAM for instance-level augmenta-
tion. Xu et al. [47] employ the semantic-aware segmenta-
tion model SEEM [52] for pseudo label refinement and mix
source and target point clouds by selecting points guided
by the SAM masks. Cao et al. [6] exploit SAM mask pri-
ors for rare objects that are inserted in the scene tackling
the long-tailed class distribution. Our method follows the
predictive alignment paradigm, where we demonstrate that
advancements in VFMs can have a direct correlation with
the improvements obtained for the task of 3D UDA.
Feature Fusion in 3D DA. xMUDA [18] proposed a variant
with late fusion of 2D and 3D features which outperforms
all the unimodal baselines. A recent line of works [43, 45]
also divert their attention toward distillation based on fused
feature representations. Similar to our work, Wu et al. [43]
utilizes a fusion module with a separate classifier to trans-
fer knowledge via predictive distillation to the 2D and 3D
modality. FtD++ [45] relies on a two-stream pipeline where
the 2D stream is fused with 3D information, which is then
used for cross-modal learning with the 3D stream. The re-
cent UniDSeg [44] enhances the frozen VFM with learnable
blocks between encoder layers allowing fine-tuning and the
integration of range image information.

In our approach, we treat the fusion as a distinct network
trained with supervision, offering us more degrees of free-
dom and better adaptability to the task of interest. As op-
posed to the xMUDA fusion variant, we explicitly optimize
the 3D and 2D stream via classifier heads and utilize these

for guiding the distribution of the fusion network. Similarly,
in relation to [43], our method explicitly regularizes the fu-
sion representation using a guiding signal to bias the fu-
sion toward a specific modality. This regularization is a key
component of our approach and is designed to enhance per-
formance under domain shift when a modality preference is
available, while still improving robustness in its absence by
promoting prediction consistency on the target domain.

The recent work in [4] also identifies the need for non-
uniform sensor fusion. In their work the fusion module is
used as a central component to overcome sensing difficul-
ties in a shared feature space. Their setup however requires
scene attribute descriptions to learn a condition token which
guides a windowed cross attention fusion over all modalities
in the image space.

3. Method
We introduce our cross-modal DA approach and start with
a pipeline overview in Section 3.1. Then, we present our
cross-modal fusion schema in Section 3.2, provide details
on cross-modal learning in Section 3.3, and conclude with
details on the training objectives in Section 3.4.

3.1. Overview

2D-3D Domains. In the 2D-3D multimodal UDA setting,
we have labeled source data and unlabeled target data from
the 2D and 3D modalities. The task is to optimize the final
segmentation prediction on the target data. We denote the
source domain as S = {x2D

i , x3D
i , yi|i ∈ IS} and the target

domain as T = {x2D
i , x3D

i |i ∈ IT }, where x2D
i and x3D

i

denote the i-th image and point cloud with yi being the 3D
segmentation label, while IS , IT represent the set of sample
indices of the source and target domain.



Network Architecture. An overview of our network archi-
tecture is depicted in Figure 2. We tackle the task of 2D-3D
cross-modal DA with two encoders to process data from the
2D and 3D modalities separately. Specificially, we encode
the RGB images x2D via a pretrained and frozen 2D Vi-
sion Foundation Model (VFM) F 2D(·; θ2DF ) which yields a
coarse patch feature map. In the 3D branch, we employ a
3D SparseConvNet [15] denoted as F 3D(·; θ3DF ) to encode
the point clouds x3D into 3D features. In the 2D-3D cross-
modal task, the 2D features are computed with the guid-
ance of the input point cloud. Specifically, we first project
3D points onto the 2D image. Based on the projected pixel
positions, we compute the pixel-wise 2D feature represen-
tation from patch features via bilinear interpolation.

For the task of cross-modal semantic segmentation, we
introduce several task heads. We first denote the main seg-
mentation heads for the 2D and 3D branch as C2D(·; θ2DC )
and C3D(·; θ3DC ) separately. Further, we follow [18] and
introduce the mimicry heads that are additional segmen-
tation task heads designed only for prediction alignment
across different branches. The prediction alignment be-
tween dual heads across modalities are shown to be more
parameter-robust than the case of a single head per modal-
ity [19]. Specifically, we introduce the mimicry head in the
3D branch which is denoted as C3D

mmc(·; θ3DCmmc
). Note that we

do not have a mimicry head for the 2D branch as we keep
the 2D VFM frozen during training.

3.2. Fusion Branch

In order to enable cross-modal learning with enhanced
guidance, we employ a fusion branch where we con-
catenate the 2D and 3D feature as the fusion feature
xfuse = concat(F 2D(x2D; θ2DF ), F 3D(x3D; θ3DF )). Fur-
ther, we employ an MLP as the fusion refinement network
F fuse(·; θfuseF ) to refine the fusion feature xfuse.

Correspondingly, we construct the main segmentation
head and the mimicry head for the fusion branch, denoted
as Cfuse(·; θfuseC ) and Cfuse

mmc (·; θfuseCmmc
). The fusion branch

is illustrated in the purple components in Figure 2. During
training with cross-modal alignment, our fusion branch pro-
vides the guiding signal for the 3D network. In the mean-
while, the prediction in the fusion branch is also regularized
by the hypothesis in the 2D and 3D modalities. We elabo-
rate the interaction between the fusion branch and the 2D or
3D branch in Section 3.3. We also ablate the impact of the
fusion branch in Table 3. To obtain the final segmentation
results we take the softmax average of the predictions from
the 3D main head and the fusion main head.

3.3. Cross-Modal Learning with Fusion

We employ the fusion network as a cross-modal learner,
trained under supervision to integrate 2D and 3D represen-
tations. To mitigate the susceptibility to domain shift, we

introduce additional regularization through the 2D and 3D
branches, resulting in a three-branch architecture that en-
ables robust cross-modal learning.

Following the practice of cross-modal UDA [7, 36], we
apply the KL divergence to encourage a mimicry distribu-
tion Pmmc (predictions from a mimicry head) to mimic a
main head guiding distribution Pmain (predictions from a
main head). This is shown to be more parameter-robust than
the cross-modal learning with only one task head per modal-
ity [19]. This self-supervision is applied on both source and
target data, i.e.,

L(D)
KLD(Pmain, Pmmc) =

∑
i∈ID

Pmain(xi) log
Pmain(xi)

Pmmc(xi)
, (1)

where ID is the corresponding domain sample index set.
In our empirical study, we realize that the fusion branch

shows consistent improved prediction performance over the
2D branch, and therefore perform cross-modal alignment
between the fusion branch and the 3D branch. We first
apply the KL divergence encouraging the 3D mimicry dis-
tribution p3Dmmc to mimic the fusion main head distribution
pfusemain , i.e.,

L(D)
align =

∑
i∈ID

pfusemain (xi) log
pfusemain (xi)

p3Dmmc(xi)
. (2)

As the fusion branch is only supervised on the source do-
main, it is susceptible to domain shift from both modalities.
To address this, we further regularize the fusion prediction
to encourage consistency with the hypothesis of either the
2D or 3D modality on the fusion branch. i.e.,

L(D)
guide = λ · L(D)

KLD(p
2D
main, p

fuse
mmc ) +

(1− λ) · L(D)
KLD(p

3D
main, p

fuse
mmc ) (3)

Here, λ is the coefficient which biases the fusion towards
the 2D or 3D branch and is chosen depending on the type of
environmental conditions that may be expected in the task
we aim to solve. We empirically demonstrate that this can
lead to a more modality-biased fusion representation in Sec-
tion 4.

3.4. Overall Training Objectives

For clarity, we denote the predicted logits from a main head
as pmmain and logits from a mimicry head as pmmmc where
pm = Cm(Fm(xm; θmF ); θmC ),m ∈ {2D, 3D, fuse}.
Supervised Learning. For each of the 2D, 3D, and fusion
branches, we perform the supervised segmentation task on
the three main heads, i.e.,

L(D)
seg (xm, y) =

∑
i∈ID

−yi log
(
pmmain(i)

)
, (4)



where m ∈ {2D, 3D, fuse}. In the following, we denote
the domain as D ∈ {S, T}. For the supervised learning on
ground truth labeled source data, we have D = S.
Overall. The overall objective is the sum of the three super-
vised segmentation losses on source (Eq. (4)), and the two
cross-modal losses on source and target (Eq. (2), (3)):

min
θ

1

|IT |
λT (L(T )

align + L(T )
guide) +

1

|IS |
λS(L(S)

align + L(S)
guide)

+
1

|IS |
∑
m∈M

L(S)
seg (x

m, y) (5)

where θ = {θ3DF , θfuseF , θ2DC , θ3DC , θfuseC , θ3DCmmc
, θfuseCmmc

} and
M = {2D, 3D, fuse}.
Additional Stage with Self-Training. To further boost
the adaptation performance, we follow the practice of self-
training in domain adaptation [9, 26, 30, 53], and conduct
the second stage by adding the supervised loss on pseudo-
labeled target data. Specifically, we compute the pseudo
labels by averaging the softmax scores from the fusion and
the 3D branch in the first-stage model:

ŷi =
1

2

(
softmax

(
pfusemain (xi)

)
+

softmax
(
p3Dmain(xi)

))
, i ∈ IT . (6)

In the second stage, the overall loss is the objective from
stage 1 (Eq. (5)) together with the additional supervised loss
on target 1

|IT |λPL

∑
m∈M L(T )

seg (xm, ŷ).

4. Experiments

In this section we describe our conducted experiments along
with the setup following the commonly used 3D UDA eval-
uation based on [19].

4.1. Datasets

We evaluate our method on the widely used nuScenes [5],
SemanticKITTI [3] (SK), VirtualKITTI [12] (VK) and the
A2D2 dataset [14]. All datasets provide a synchronized and
calibrated setup that allows point to pixel projection. For
simplicity and comparability, only front image sensor data
is utilized. The DA tasks feature four domain shift scenar-
ios, aiming to evaluate diverse scenarios: USA → Singa-
pore evaluates adaptation between geographic regions us-
ing a similar sensor setup. The Day → Night scenario eval-
uates adaptation to a low light scenario. Both tasks are ex-
tracted from the nuScenes dataset, which provides a signifi-
cant challenge for 3D modeling due to its low point density.

The A2D2 → SemanticKITTI (A2D2 → SK) task is a chal-
lenging dataset adaptation task, since both 2D and 3D sen-
sor systems significantly differ in terms of resolution, field
of view, and LiDAR beam structure. The VirtualKITTI →
SemanticKITTI (VK → SK) explores a virtual-to-real adap-
tation, aiming to study the adaptability from generated 2D
and 3D data towards real data, where the generated point
clouds are randomly sampled points from depth maps of
the generated scenes. The different classes are merged to
six classes (ten for the A2D2-SemanticKITTI task).

4.2. Implementation Details

In general, we follow the setup and hyperparameters pro-
vided by xMuda [19], however, we adjusted several impor-
tant parameters, as detailed in the following paragraph. The
pipeline consists of a pre-trained, frozen vision foundation
model with a trainable linear head, a fusion network and
a 3D encoder based on a U-Net [40] style 3D SparseCon-
vNet [15]. We used batch size 24 for training. Further, for
the training of the linear 2D classifier and the fusion net-
work, we reduce the learning rate to 1 × 10−3. We set the
learning rate for the 3D model to 3× 10−3. For the pseudo-
label loss, we used λPL = 1 for all datasets. We set the
source and target alignment coefficients λS and λT to 1 and
0.1 for the NuScenes tasks and 0.5 and 0.5 for the A2D2-
SemanticKITTI and VirtualKITTI-SemanticKITTI task, re-
spectively. The fusion modality guidance λ is set to 1 for
adaptation in daylight target domain tasks and 0 for night
tasks to bias the fusion on modalities that are more robust
in these lighting conditions.

Vision Foundation Models. In our experiments we em-
ploy the AM-Radio [39] VFM version 2.5-L as our primary
model (patch size 16), chosen for its strong linear probing
capabilities. To show the generalization of our approach,
we also ablate with DINOv2 [34]. we observe minimal per-
formance fluctuation.

High Resolution 2D Features. Since ViT Transformers
operate on image patches, we apply two general strategies
to obtain higher resolution pixel-level features, which are
essential for dense prediction tasks such as semantic seg-
mentation. We follow [28, 41] and apply cropout-resize
with higher resolution in order to maximize the resolution
for the patch-wise feature extraction for the ViT-encoder.
Second, we add bilinear interpolation following [36, 37] to
retrieve interpolated pixel-level features.

Fusion Network. We use an MLP with two hidden layers,
each followed by batch normalization, GeLU nonlinearity,
and a dropout layer. We choose the hidden dimensions of
the same dimension as the 2D input, i.e., 1024 for the AM-



USA → Singapore Day → Night VK → SK A2D2 → SK
Method VFM 2D 3D 2D3D 2D 3D 2D3D 2D 3D 2D3D 2D 3D 2D3D Avg

Source 58.4 62.8 68.2 47.8 68.8 63.3 26.8 42.0 42.2 34.2 35.9 40.4 49.2
Target 75.4 76.0 79.6 61.5 69.8 69.2 66.3 78.4 80.1 59.3 71.9 73.6 71.8

DsCML [35] 65.6 56.2 66.1 50.9 49.3 53.2 38.4 38.4 45.5 39.6 45.1 44.5 49.4
DsCMLPL [35] 65.6 57.5 66.9 51.4 49.8 53.8 39.6 41.8 42.2 46.8 51.8 52.4 51.6
xMUDA [19] 64.4 63.2 69.4 55.5 69.2 67.4 42.1 46.7 48.2 38.3 46.0 44.0 54.5
BFtD [43] 63.7 62.2 69.4 57.1 70.4 68.3 41.5 45.5 51.5 40.5 44.4 48.7 55.3
SSE [51] 64.9 63.9 69.2 62.8 69.0 68.9 45.9 40.0 49.6 44.5 46.8 48.4 56.2
XMUDAPL [19] 67.0 65.4 71.2 57.6 69.9 64.4 45.8 51.0 52.0 41.2 49.8 47.5 56.9
SSEPL [51] 66.9 64.4 70.6 59.1 67.0 66.3 47.2 53.5 55.2 45.9 51.5 52.5 58.3
FtD++ [45] 69.7 64.6 69.8 68.8 69.6 71.0 51.0 44.0 52.6 48.8 46.2 51.1 58.9
BFtDPL [43] 65.9 66.0 71.3 60.6 70.0 66.6 48.6 55.4 57.5 42.6 53.7 52.7 59.2
MM2D3D [7] 71.7 66.8 72.4 70.5 70.2 72.1 53.4 50.3 56.5 42.3 46.1 46.2 59.9
FtD++PL [45] 71.7 65.5 72.3 68.9 70.3 71.8 52.9 51.2 57.8 51.4 49.7 54.8 61.5
MM2D3PL [7] 74.3 68.3 74.9 71.3 69.6 72.2 55.4 55.0 59.7 46.4 48.7 50.7 62.2
LTA-SAMPL [36] ✓ - 73.6 - - 70.5 - - 64.9 - - 52.1 - -
VFM-BOOSTPL [47] ✓ 70.0 65.6 72.3 60.6 70.5 66.5 57.2 52.0 61.0 45.0 52.3 50.0 60.3
UniDSeg [44] ✓ 67.2 67.6 72.9 63.2 71.2 71.2 60.5 50.9 62.2 50.7 55.4 57.5 62.5

Ours ✓ 74.4 67.9 75.4 67.9 68.1 70.3 70.1 64.5 70.7 60.3 54.9 63.1 67.2
OursPL ✓ 76.1 70.5 76.2 69.2 69.0 70.4 72.1 68.6 72.1 62.3 57.8 63.3 69.0

Table 1. Quantitative (mIoU) results (best, second). PL denotes two-stage training with pseudo-labels. For 2D we report the result of our
fusion network. 2D3D denotes the softmax average of the fusion and 3D head. Source and Target: The baseline xMUDA implementation
is trained either on source data or on target data, which serves as the lower and upper bound.

RADIO VFM. For the input we linearly project the 3D fea-
tures to the 2D VFM dimension to reduce the bias from the
large dimension gap between the 2D and 3D feature dimen-
sions.

4.3. Experimental Results

We evaluate our method on the four commonly used 3D
UDA tasks for semantic segmentation. Following previous
works in the field [7, 18, 35], we evaluate the performance
on the test set using the checkpoint that achieved the best
IoU score on the validation set.

In Table 1 we report the results for our method and com-
parison with all other baselines and state-of-the-art meth-
ods. Generally, our method improves in most scenarios
when compared with other approaches. We observe an im-
pressive improvement of 6.5% on average (over all tasks),
when compared with the strongest baseline UniDSeg [44],
which prompt-tunes a VLM. On individual tasks, we also
find that our method generally performs well. When com-
paring with the other approaches that also employ the re-
cently proposed VFMs, we see a positive trend and we out-
perform the state-of-the-art VFM-BOOST [47] by an aver-
age of 7.5%, whereas obtaining up to 14.2% gains on the
adaptation task of VirtualKITTI to SemanticKITTI. Simi-
larly, we find that our method obtains an improvement over
the other VFM-guided method (LTA-SAM [36]) of over
5% and 3% in the adaptation scenarios of A2D2 → Se-
manticKITTI and VirtualKITTI → SemanticKITTI, while
remaining competitive on the other two tasks. These results

highlight the benefits of our proposed fusion scheme and bi-
asing of this fusion according to the downstream task of in-
terest. In Table 1 we observe that our method fares better on
most tasks but remains competitive on adaptation from Day
→ Night scenario, where we rank second by a small mar-
gin of 0.8% on average, when comparing to FtD++. FtD++,
uses additional distillation to preserve the domain-specific
attributes which helps them to perform well on the task of
Day → Night adaptation, whereas our method outperforms
them on all other scenarios, without requiring an additional
distillation. Overall, we outperform FtD++ by an average
of 7.5%. These strong results highlight the two main as-
pects of our method: the effective VFM utilization and the
proposed modality guided fusion.

4.4. Ablation Study

In this subsection, we provide additional experiments vali-
dating the effectiveness of our method.

Component ablation study. We ablate our fusion adap-
tation method starting from a lightweight fusion proposed
in [18], which consists of 2D and 3D feature concatenation
followed by a projection layer and ReLU nonlinearity and
evaluated the effectiveness of our proposed modality guid-
ance. In addition, we ablate the utilization of an MLP in-
stead of a single layered fusion and also report the impact of
the modality guidance (MG) on the MLP. For comparison,
we also provide results for a symmetric alignment (SymAl)
where we align the fusion from both the VFM and 3D net-
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Figure 3. Qualitative comparison of our method on an example from each dataset. We show the softmax average of our fusion and
3D head. Boxes mark locations of interest with zoom-in below. Multiple traffic participants are not detected by xMUDA-VFM-Fuse;
VK → SK: A car is incorrectly identified as nature; A2D2 → SK: Two persons are missed; USA → Sing. A bus is wrongly identified as
a manmade structure. Our method correctly identifies these traffic participants likely due to our stronger reliance on the well-generalizing
VFM features. Day → Night xMUDA-VFM-Fuse detects false positive vehicles, a potential sign of overreliance on visual features in
low-light conditions which can be avoided with our proposed fusion regularization.

work in a symmetric way. This means, we added another
mimicry head to the fusion network such that each modal-
ity (VFM, 3D) has their respective student on the fusion
network.

The results in Table 2 show practically no gains when
applying the guidance on the vanilla fusion, as its sim-
ple structure may prevent it from effectively responding to
the modality guidance. Discernible improvements can be
achieved when employing an MLP instead of a single lay-
ered fusion. The MLP fusion is improved when aligning the
fusion from both the VFM and the 3D teacher, suggesting
that a symmetric regularization is worthy in the absence of

any priors regarding the more robust modality. However, for
our evaluated tasks the full potential can be harnessed when
the fusion head is guided toward the VFM on daylight target
data and for the night task toward the 3D network.

Generalization beyond RADIO. In Figure 4 we evalu-
ate our method by using DINOv2. We see that our method
can generalize across VFMs. With the DINOv2 backbone,
we observe a improvement of 1.3% for the USA → Sin-
gapore task, while we observe a degradation of 1.9% on
the VirtualKITTI → Semantic KITTI adaptation. These re-



Figure 4. Comparison of current SOTA VFMs on USA → Sing.
and VK → SK. We report the mIoU % for our main heads includ-
ing the VFM head utilized for the fusion regularization.

Day → Night VK → SK
Fusion 2D 3D 2D3D 2D 3D 2D3D

Vanilla 64.8 68.9 68.3 68.3 61.1 68.5
+ MG 64.3 67.8 67.8 68.8 64.2 69.7
MLP 65.9 67.5 68.8 69.7 63.2 69.2
MLP + SymAl 66.1 67.5 68.9 69.9 64.0 69.9

MLP + MG (ours) 67.9 68.1 70.3 70.1 64.5 70.7

Table 2. Fusion Ablation Study. Modality-guided (MG) fusion
with an MLP is compared against vanilla fusion and symmetric
alignment (SymAl) from both the 2D and 3D networks. Note, that
the vanilla fusion here is conducted slightly differently than the
xMUDA-Fuse method since we first project the 3D features to the
dimension of the 2D features.

sults highlight the generalization ability of our method be-
yond AM-RADIO. Further, as VFMs advance, our method
can also directly benefit and obtain further performance im-
provements.

xMUDA Fusion Ablation. In this experiment, we com-
pare our method with xMUDA variants including their fu-
sion variant that we implemented with our utilized VFM.
The xMUDA fusion variant has only a single classifier on
top of a linear layer and a ReLu nonlinearity. As input
serves the feature concatenation of the 2D and 3D features.
The supervision is only applied to the fusion classifier. Fur-
ther, 2D and 3D stream encoders are aligned by the fusion
classifier via a mimicry head. The results of this ablation
are presented in Table 3. We find that our proposed fusion
schema fares better than the fusion proposed by xMUDA.
A notable result is obtained by comparing the xMUDA
method and replacing the 2D feature extractor with the Ra-
dio VFM (employed in our work). We find that we outper-
form their method by 2% and 1.7% on the two adaptation
scenarios we test.

2D3D USA → Sing. A2D2 → SK

xMUDA [19] 69.2 44.0
xMUDA-Fuse [19] 69.3 42.6
xMUDA-VFM-Fuse 73.4 61.4

Ours 75.4 63.1

Table 3. Comparison of xMUDA-Fuse variants with and without
VFM backbone. Our method improves over other methods outlin-
ing the need for fusion adaptation strategies for VFM utilization.

Qualitative Results. Figure 3 depicts illustrative exam-
ples of our method and a comparison to xMUDA-VFM-
Fuse. While the comparison implies similar performance
for USA → Singapore and A2D2 → SK task, our method
overall produces smoother segmentation masks compared
to xMUDA-VFM-Fuse, while xMUDA-VFM-Fuse more
often correctly classifies occluded points (resulting from the
sensor system layout) which are especially present in the
SemanticKITTI dataset and can be observed on most bor-
ders of close objects, well observable in the left vehicle in
the VK → SK and the A2D2 → SK example.

Limitations The fusion guidance relies on a predefined
modality preference informed by environmental conditions
(e.g., prioritizing LiDAR under low-light and RGB in day-
light). As such, it may be less effective in ambiguous con-
ditions. In future work, we plan to explore mechanisms for
estimating modality reliability at a per-point level, enabling
flexible and fine-grained guidance based on spatial and se-
mantic context.

5. Conclusion
We present a method that effectively leverages vision
foundation models (VFMs) for 3D unsupervised domain
adaptation (UDA) by introducing an adaptive fusion strat-
egy informed by environmental conditions. Specifically,
we show that biasing the fusion toward the more reliable
modality, based on lighting conditions, can enhance adap-
tation performance. We extensively evaluate our proposed
method on four commonly employed UDA benchmarks
and demonstrate strong improvements over existing state-
of-the-art methods. These results offer insights into how
VFMs can be effectively integrated into multi-modal learn-
ing and highlight the potential of adaptive fusion schemes.
We believe that fusion modules remain a promising
direction for addressing challenges such as sensor mis-
alignment, failures, and varying environmental conditions.
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