
CooPre: Cooperative Pretraining for V2X Cooperative Perception

Seth Z. Zhao1 Hao Xiang1 Chenfeng Xu2 Xin Xia1 Bolei Zhou1 Jiaqi Ma1

1UCLA 2UC Berkeley

Abstract

Existing Vehicle-to-Everything (V2X) cooperative percep-
tion methods rely on accurate multi-agent 3D annotations.
Nevertheless, it is time-consuming and expensive to col-
lect and annotate real-world data, especially for V2X sys-
tems. In this paper, we present a self-supervised learn-
ing framwork for V2X cooperative perception, which uti-
lizes the vast amount of unlabeled 3D V2X data to en-
hance the perception performance. Specifically, multi-agent
sensing information is aggregated to form a holistic view
and a novel proxy task is formulated to reconstruct the Li-
DAR point clouds across multiple connected agents to bet-
ter reason multi-agent spatial correlations. Besides, we
develop a V2X bird-eye-view (BEV) guided masking strat-
egy which effectively allows the model to pay attention to
3D features across heterogeneous V2X agents (i.e., vehi-
cles and infrastructure) in the BEV space. Noticeably,
such a masking strategy effectively pretrains the 3D en-
coder with a multi-agent LiDAR point cloud reconstruc-
tion objective and is compatible with mainstream coop-
erative perception backbones. Our approach, validated
through extensive experiments on representative datasets
(i.e., V2X-Real, V2V4Real, and OPV2V) and multiple state-
of-the-art cooperative perception methods (i.e., AttFuse, F-
Cooper, and V2X-ViT), leads to a performance boost across
all V2X settings. Notably, CooPre achieves a 4% mAP
improvement on V2X-Real dataset and surpasses base-
line performance using only 50% of the training data,
highlighting its data efficiency. Additionally, we demon-
strate the framework’s powerful performance in cross-
domain transferability and robustness under challenging
scenarios. The code will be made publicly available at
https://github.com/sethzhao506/CooPre.

1. Introduction

Achieving autonomy in complex and open traffic environ-
ments poses significant challenges for single-vehicle vision
systems. These systems often suffer from occlusions and
a limited perception range due to each vehicle’s singular
viewpoint, limiting the capacity of current deep learning ap-
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Figure 1. Illustration of our CooPre framework. Given multi-
agent LiDAR input, CooPre pretrains the 3D encoder via LiDAR
point cloud reconstruction. During the finetuning stage, the initial-
ized 3D encoder will be used for 3D detection.

proaches to develop a holistic 3D representation in the in-
teracting environment. Vehicle-to-Everything (V2X) Coop-
erative Perception [19, 37, 40, 47] emerges as a promising
solution by providing each ego agent with a comprehensive
understanding of the surrounding environment. Through
collaboration among connected agents (vehicles or infras-
tructure), V2X facilitates the sharing of critical sensing in-
formation, thereby extending the perception range and mit-
igating occlusions. However, this paradigm introduces ad-
ditional geometrical and topological information that the
model must handle, necessitating the exploration of a robust
representation that accounts for these elements. Obtaining
such a representation often requires a large amount of anno-
tated data, but the scale of current real-world V2X datasets
[9, 21, 37, 42, 47, 53] is still limited compared to single-
vehicle counterparts [1, 2, 8, 29]. Therefore, investigating
the representation learning problem within the constraints
of current V2X dataset scales is crucial.

In multi-agent perception systems, each ego agent must
learn a representation that manages complex agent interac-
tion information to achieve effective cooperation. Specifi-
cally, in V2X scenarios, the ego agent must handle differ-
ent sensor configurations among various agents, which op-
erate at different ranges and placement positions. Capturing
this underlying distribution is challenging solely through
the supervision of hand-labeled 3D bounding boxes. This
complexity poses a challenge for the ”train-from-scratch”
paradigm, as its learned representation heavily depends on
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Figure 2. Illustration of different training paradigms. Compared with previous training paradigms, our paradigm uses multi-agent
collaboration while being annotation-free.

the random initialization of model parameters and the qual-
ity and quantity of annotated 3D bounding boxes, thereby
affecting overall performance. For example, as discussed in
[24, 33, 36, 42, 50], such approach could be easily perturbed
by synchronization or localization errors in real-world sce-
narios. DiscoNet [18] offers an alternative paradigm by em-
ploying a teacher model to guide the student model during
training. However, a significant amount of annotations is
still required to train an effective teacher model that can fa-
cilitate the learning of the student model.

To this end, we propose an effective self-supervised
multi-agent Cooperative Pretraining framework (CooPre)
that enables the model to learn meaningful prior represen-
tation of the holistic 3D environment before the perception
task, as illustrated in Fig. 1. Our framework leverages the
benefits of unlabeled LiDAR point cloud data transmitted
from different agents, allowing the model to reconstruct
the point cloud location and learn essential prior knowl-
edge of scenarios (e.g., intersections or corridors) and Li-
DAR sensor distributions (e.g., range, placement position,
and sparsity) of each agent from a bird-eye-view (BEV)
perspective. In the enlarged perception field, this heteroge-
neous reconstruction task also helps mitigate issues related
to sparse feature points in far-range and occlusion scenar-
ios. In addition, this method can be seamlessly integrated
with state-of-the-art cooperative perception methods to im-
prove perception capability. Compared to the other two
training paradigms in Fig. 2, our pretraining framework is
annotation-free, which is the main contribution to represen-
tation learning in V2X cooperative perception.

Through extensive experiments and ablation studies
across three representative V2X datasets (i.e., V2X-Real

[37], V2V4Real [42], and OPV2V [41]) and three differ-
ent V2X fusion methods [4, 40, 41], we demonstrate the ef-
fectiveness of CooPre in V2X cooperative perception. Our
findings show that: 1) CooPre boosts perception capabil-
ities in scenarios involving occlusions and long-range per-
ception, outperforming train-from-scratch and single-agent
pretraining methods [22, 28]; 2) CooPre enables the model
to learn important geometric and topological representa-
tions under heterogeneous sensor configurations, allowing
better recognition of rigid-body objects like cars and trucks;
3) the learned representations from CooPre enhance data
efficiency and demonstrate strong generalizability to un-
seen distributions, making them particularly advantageous
for domain adaptation, especially in data scarcity scenarios.
Moreover, our study underscores the critical role of well-
learned 3D representations as a promising complement to
task-specific design optimizations in V2X cooperative per-
ception.

2. Related Works

2.1. Cooperative Perception
Single-vehicle systems struggle with occlusions and long-
distance perception in complex traffic environments due to
the limitation of the perception range of LiDAR devices.
Cooperative systems, on the other hand, enhance detec-
tion performance by sharing raw data (Early Fusion), de-
tection outputs (Late Fusion), or intermediate bird-eye-view
(BEV) representations (Intermediate Fusion) among con-
nected agents [11, 32, 41]. With the recent advancement
of a variety of simulation and real-world dataset curations
[9, 19, 37, 41, 42, 46, 47], many literature [4, 11, 32, 34, 39–



41, 44] have been discussing the algorithmic designs of col-
laborative modes from vehicle-to-vehicle (V2V) collabora-
tion to vehicle-to-everything (V2X) collaboration in differ-
ent traffic scenarios. Noticeably, the intermediate fusion
strategy has been the primary direction since it achieves
the best trade-off between accuracy and bandwidth require-
ments. After applying a 3D encoder [14, 43, 51] to the
input LiDAR feature, the intermediate fusion strategy in-
volves projecting 3D features to BEV features where agents
will perform interactions before final detection results. For
example, AttFuse [41] utilizes a simple agent-wise single-
head attention to fuse all features, whereas V2X-ViT [40]
presents a unified vision transformer for robust multi-agent
multi-scale perception. Despite their targeted designs, these
methods all follow ”train-from-scratch” paradigm and thus
exhibit unstable performance when faced with V2X collab-
oration challenges, particularly due to sensor data hetero-
geneity issues [25, 35]. In this paper, we propose a model-
agnostic pretraining framework to enhance the perception
capability of these cooperative perception methods.

2.2. LiDAR-based Self-supervised Learning

Representation learning in autonomous driving [3, 5, 15, 16,
20, 22, 26, 28, 30, 38] has been prevailingly investigated in
single-vehicle systems. Stemming from the recent advance-
ment of image reconstruction pretraining methods [6, 10],
point cloud pretraining reconstruction methods [7, 12, 22,
26, 27, 30, 45, 48, 49, 52] are also proven effective in im-
proving backbone model’s robustness and generalizability.
Recently, this approach has been applied to 3D represen-
tation learning of outdoor point clouds. Occupancy-MAE
[26] applies a voxel-wise masking strategy to reconstruct
masked voxels and predict occupancy. GD-MAE [45] pro-
poses a multi-level transformer architecture and a multi-
scale masking strategy with a lightweight generative de-
coder to recover masked patches. GeoMAE [30] formu-
lates the pretraining target to be geometric feature predic-
tions, such as pyramid centroid, occupancy, surface nor-
mal, and curvature of point clouds. BEV-MAE [22] uses
a BEV-guided masking strategy to learn BEV feature rep-
resentations. Notably, while such pretraining methods have
shown great potential in developing general feature repre-
sentations, their improvement is limited due to the restricted
perception field caused by perception range and occlusion
in single-vehicle systems. Additionally, there is limited dis-
cussion on pretraining in multi-agent systems, with the most
similar work being CORE [31], which proposes a BEV map
reconstruction as an auxiliary task alongside the original
perception target. Our work, on the other hand, provides the
well-learned BEV representations that facilitate perception
performance without additional computation efforts during
the finetuning stage.

3. Method

3.1. Framework Overview

Our CooPre framework, as illustrated in Fig. 3, is de-
signed to facilitate 3D representation learning across hetero-
geneous V2X agents. To ensure robust cross-agent feature
learning and mitigate feature sparsity issues, we propose
three key design elements. First, we leverage early fusion to
integrate LiDAR point cloud from collaborative agents, ef-
fectively expanding the ego agent’s perception field. This
design mitigates the sparse feature issue and enables the
subsequent LiDAR point cloud reconstruction objective to
be applied to both the ego and collaborative agents. Second,
instead of reconstructing the point cloud in voxel space, we
reconstruct masked information on the BEV plane. This
design enhances the model’s feature learning process from
a BEV perspective. Third, we require the model to recon-
struct masked LiDAR point clouds from both the ego and
collaborative agents, allowing the 3D encoder to learn the
multi-agent LiDAR sensor distribution regardless of the ego
agent’s perspective. Notably, our pretraining operates in
BEV representation space, making it compatible with main-
stream cooperative fusion methods [4, 40, 41] and widely
used 3D encoder backbones [14, 43] during finetuning.

3.2. Multi-agent Reconstruction Pretraining

Early Fusion of Multi-agent LiDAR point cloud. We
formulate the process of early fusion of raw LiDAR point
cloud data across V2X agents as follows. Suppose we
have ego agent Aego and a set of N cooperative agents Ai

for i ∈ {1 . . . N} within the communication range, where
each agent could be either Connected Autonomous Vehi-
cle (CAV) or infrastructure. During the pretraining stage,
each cooperative agent Ai shares LiDAR point clouds and
metadata information, such as poses, extrinsics, and agent
type, to Aego. We assume the transmission of LiDAR point
clouds and metadata is well-synchronized. Consequently,
after projecting the point clouds of each cooperative agent
to the ego agent’s coordinate, the perception point cloud
field of the ego agent Aego includes its own LiDAR point
clouds Pego as well as the LiDAR point clouds Pi from
each cooperative agent Ai. We refer to the collection of
projected LiDAR point clouds from cooperative agents as
Pcoop =

⋃
i Pi. In order for the encoder to learn invari-

ant features from raw point cloud data from each agent,
we perform data augmentations, including scaling, rotation,
flip and downsampling [14]. These augmentations enhance
the model’s generalization capabilities during pretraining,
allowing it to effectively accomplish the pretraining objec-
tives under varying conditions and viewpoints. Thus, the
collection of original and augmented multi-agent LiDAR
point cloud becomes our pretraining data corpus.
V2X BEV-guided Masking Strategy. We design a V2X
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Figure 3. Detailed pipeline of our proposed CooPre framework. During the pretraining stage, the 3D encoder would be asked to perform
a cooperative reconstruction task utilizing the vast amount of unlabeled LiDAR point cloud data transmitted from different agents. The
masking strategy will be applied in a BEV-guided manner to take into account the reconstruction of far-range point clouds.

BEV-guided masking strategy to enhance feature learning
from a BEV perspective. For each ego agent Aego, we sup-
pose the shape of obtained BEV features from raw LiDAR
input is X × Y × C. According to this shape, we define a
BEV plane of size X × Y to divide up the plane and obtain
BEV grids. We ensure that the size of masked BEV grids
matches the resolution of BEV features obtained from 3D
encoder. Each BEV grid gi,j would be used to determine
whether the points inside the grid would be masked or not.
After that, for each LiDAR point pk ∈ Pego

⋃
Pcoop, we

project it onto a corresponding BEV grid gi,j based on pk’s
x, y coordinates. With the help of projected point clouds
from cooperative agents, the number of empty BEV grids
largely decreases. We then randomly apply a high masking
ratio towards non-empty BEV grids, where the point clouds
inside the grid will be masked. Note that for a single-agent
approach [22], this strategy often leads to numerous BEV
grids with sparse point clouds, making self-supervision both
difficult and imprecise. In contrast, multi-agent collabora-
tion proves advantageous, as it enriches the sparsely popu-
lated BEV grids with point cloud data from other collabo-
rative agents.
Decoder design. The decoder design is flexible and inde-
pendent from downstream task since only the 3D encoder
would be taken for finetuning. Unlike [45], we utilize a
lightweight decoder with one convolution layer for training
efficiency. The decoder would take unmasked point clouds
as input and output a fixed number of LiDAR point clouds
for the multi-agent reconstruction objective.
Multi-agent LiDAR point cloud Reconstruction Objec-
tive. As the ground-truth number of point clouds varies in
each masked BEV grid, we utilize the Chamfer distance loss
as the learning objective to measure the difference between
predicted point clouds P̂ and ground-truth point clouds P .
Specifically, suppose in the masked BEV grid gi,j , the re-
construction loss is defined as the following equation:

Lrec(P̂ , P ) = 1
|P̂ |

∑
p̂i∈P̂

min
pj∈P

∥pi − p̂j∥22 +
1
|P |

∑
pi∈P

min
p̂j∈P̂

∥pi − p̂j∥22 (1)

We enforce the model to reconstruct the LiDAR point cloud
from both ego and cooperative agent Pego and Pcoop. We

will show in the ablation study that such design is crucial
for far-range feature learning across heterogeneous agents.

4. Experiments

4.1. Experiment Setting
Datasets. We evaluate our method on three datasets,
namely V2X-Real [37], V2V4Real [42], and OPV2V [41].
V2X-Real is a large-scale, real-world V2X dataset that en-
compasses all V2X collaboration modes, including vehicle-
centric (VC), infrastructure-centric (IC), vehicle-to-vehicle
(V2V), and infra-to-infra (I2I). LiDAR sensors for this
dataset were embodied with different sensor configurations
and deployed in both intersection and corridor scenarios.
Note that except for the V2V subset in the V2X-Real
dataset, the rest of the subsets all exhibit such LiDAR sensor
heterogeneity property. We also examine the effectiveness
of our pretraining method on V2V4Real and OPV2V, two
well-established benchmarks for real-world and simulated
V2V cooperative perception.
Evaluation Metrics. Following previous evaluation pro-
tocols [37, 41, 42], we adopt the Average Precisions (AP)
at the specified Intersection-over-Union (IoU) threshold as
the metric to evaluate the detection performance. For V2X-
Real [37] dataset, we evaluate the performance of different
subclasses (i.e. car, pedestrian, and truck) and a final mean
average precision (mAP) at the threshold of 0.3 and 0.5.
For V2V4Real [42] dataset, we evaluate the performance
of the vehicle class at the threshold of 0.5 and 0.7 in both
synchronized and asynchronized modes. For OPV2V [41]
dataset, we evaluate the performance of the vehicle class
at the threshold of 0.5 and 0.7 at their two separate test
sets. Green denotes the improvements over the correspond-
ing backbone for all experiments.
Implementation Details. We evaluate our pretraining
method using SECOND backbone [43] since it obtains
higher performance and faster training speed in the real-
world dataset [37, 42]. Note that our pretraining method
could also be generalized to other 3D encoders such as
PointPillar [14], as shown in Table 7. All experiments are
conducted in one Nvidia A6000 GPU. We employ AdamW



Table 1. Performance on the test set of V2X-Real dataset.

Dataset Method Car Pedestrian Truck Mean
AP0.3 AP0.5 AP0.3 AP0.5 AP0.3 AP0.5 AP0.3 AP0.5

V2X-Real VC No Fusion 51.0 48.0 35.8 20.4 38.9 36.3 41.9 34.9
Early Fusion 60.2 58.2 36.2 21.0 45.3 43.3 47.2 40.8
Late Fusion 59.0 56.5 36.7 17.6 44.0 39.7 46.5 37.9
AttFuse [41] 67.7 65.8 45.0 27.6 55.5 52.0 56.1 48.5
F-Cooper [4] 64.9 62.7 45.5 26.7 39.8 35.1 50.1 41.5
V2X-ViT [40] 63.3 61.2 42.2 24.8 38.4 36.0 48.0 40.0

CooPre (AttFuse) 71.5 +3.8 70.2 +4.4 46.9 +1.9 28.0 +0.4 61.9 +6.4 58.3 +6.3 60.1 +4.0 52.2 +3.7

CooPre (F-Cooper) 67.0 +2.1 65.7 +3.0 43.6 -1.9 25.4 -1.3 49.3 +9.5 44.9 +9.8 53.3 +3.2 45.3 +3.8

CooPre (V2X-ViT) 66.1 +2.8 64.5 +3.3 45.3 +3.1 27.7 +2.9 43.5 +5.1 40.1 +4.1 51.7 +3.7 44.1 +4.1

V2X-Real V2V No Fusion 49.8 47.7 43.6 28.7 38.3 37.0 43.9 37.8
Early Fusion 62.5 60.0 43.3 28.1 47.3 44.7 51.0 44.3
Late Fusion 51.6 50.0 44.6 29.1 37.1 35.8 44.4 38.3
AttFuse [41] 66.9 65.3 46.0 30.4 53.8 50.2 55.5 48.6
F-Cooper [4] 64.6 63.0 41.9 26.9 48.9 44.8 51.8 44.9
V2X-ViT [40] 62.6 58.7 47.5 30.5 49.3 47.0 53.1 45.4

CooPre (AttFuse) 71.4 +4.5 70.1 +4.8 49.7 +3.7 33.7 +3.3 57.5 +3.7 55.5 +5.3 59.5 +4.0 53.1 +4.5

CooPre (F-Cooper) 68.6 +4.0 67.0 +4.0 42.0 +0.1 26.4 -0.5 51.0 +2.1 48.1 +3.3 53.9 +2.1 47.2 +2.3

CooPre (V2X-ViT) 66.9 +4.3 64.5 +5.8 46.7 -0.8 29.2 -1.3 54.1 +4.8 52.3 +5.3 55.9 +2.8 48.7 +3.3

V2X-Real IC No Fusion 55.7 48.6 35.2 20.4 46.3 45.5 45.8 38.2
Early Fusion 73.6 66.2 45.0 25.7 49.9 47.4 56.2 46.4
Late Fusion 74.5 72.5 47.8 27.4 66.1 57.8 62.8 52.6
AttFuse [41] 84.5 82.1 61.0 40.6 59.9 59.1 68.5 60.6
F-Cooper [4] 79.1 76.2 57.0 35.8 52.0 45.7 62.7 52.6
V2X-ViT [40] 81.0 76.9 44.9 29.2 37.3 36.8 54.4 47.6

CooPre (AttFuse) 86.2 +1.7 84.1 +2.0 60.5 -0.5 39.3 -1.3 61.5 +1.6 61.0 +1.9 69.4 +0.9 61.4 +0.8

CooPre (F-Cooper) 84.1 +5.0 80.7 +4.5 58.4 +1.4 33.9 -1.9 51.8 -0.2 50.7 +5.0 64.8 +2.1 55.1 +2.5

CooPre (V2X-ViT) 81.4 +0.4 77.3 +0.4 45.8 +0.9 29.1 -0.1 37.4 +0.1 37.2 +0.4 54.8 +0.4 47.9 +0.3

V2X-Real I2I No Fusion 67.3 61.5 49.2 32.3 53.2 49.0 56.6 47.6
Early Fusion 69.3 63.4 51.9 32.5 55.5 52.1 58.9 49.4
Late Fusion 79.6 78.0 67.3 46.7 64.4 55.8 70.4 60.2
AttFuse [41] 83.4 81.9 67.0 44.8 63.6 62.8 71.3 63.2
F-Cooper [4] 85.1 82.0 66.1 44.3 51.3 50.8 67.5 59.0
V2X-ViT [40] 82.0 79.5 68.9 45.4 59.0 57.0 69.9 60.6

CooPre (AttFuse) 84.6 +1.2 82.7 +0.8 66.5 -0.5 45.2 +0.4 65.2 +1.6 62.5 -0.3 72.1 +0.8 63.5 +0.3

CooPre (F-Cooper) 85.4 +0.3 82.1 +0.1 66.6 +0.5 45.1 +0.8 51.9 +0.6 51.1 +0.3 68.0 +0.5 59.4 +0.4

CooPre (V2X-ViT) 84.0 +2.0 82.4 +2.9 66.9 -2.0 44.4 -1.0 59.1 +0.1 58.7 +1.7 70.0 +0.1 61.9 +1.3

Table 2. Performance on the test set of V2V4Real dataset.

Method Sync (AP0.5/0.7) Async (AP0.5/0.7)
Overall 0-30m 30m-50m 50m-100m Overall 0-30m 30m-50m 50m-100m

No Fusion 52.6/36.2 76.6/58.7 45.9/28.7 10.0/5.0 52.6/36.2 76.6/58.7 45.9/28.7 10.0/5.0
Early Fusion 66.7/34.5 83.3/48.9 51.0/25.3 48.4/19.9 59.5/28.7 82.5/46.2 43.5/21.1 29.8/9.0
Late Fusion 69.9/40.2 81.4/44.0 60.7/38.5 56.9/36.2 63.9/32.5 78.9/40.3 56.8/32.9 39.4/16.8
AttFuse [41] 71.2/44.2 87.3/55.5 55.6/39.8 51.1/25.7 63.8/34.9 85.7/51.4 47.8/31.0 33.4/10.5
F-Cooper [4] 70.6/41.8 84.4/52.8 59.9/37.8 51.5/26.2 62.2/34.1 82.5/50.0 51.7/30.9 31.9/10.7
V2X-ViT [40] 71.7/43.3 87.8/59.5 58.6/34.1 50.4/23.0 60.0/32.9 83.3/51.3 47.4/25.7 26.3/9.0

CooPre (AttFuse) 74.3/49.3 +3.1/+5.1 87.4/60.2 +0.1/+4.7 63.4/45.2 +7.8/+5.4 55.6/32.0 +4.5/+6.3 66.1/39.9 +2.3/+5.0 85.9/57.0 +0.2/+5.6 54.3/34.9 +6.5/+3.9 36.1/14.0 +2.7/+3.5

CooPre (F-Cooper) 71.4/43.4 +0.8/+1.6 86.1/53.2 +1.7/+0.4 63.0/39.6 +3.1/+1.8 48.2/29.5 -3.3/+3.3 63.7/34.8 +1.5/+0.7 84.7/50.3 +2.2/+0.3 55.0/31.1 +3.3/+0.2 29.7/11.9 -2.2/+0.8

CooPre (V2X-ViT) 73.1/43.9 +1.4/+0.6 88.9/58.1 +1.1/-1.4 61.6/36.7 +3.0/+2.6 50.7/26.0 +0.3/+3.0 63.8/38.2 +3.8/+5.3 86.7/58.3 +3.4/+7.0 51.1/30.7 +3.7/+5.0 29.8/11.3 +3.5/+2.3

[13] optimizer with a weight decay of 1 × 10−2 to opti-
mize our models. During the pretraining stage, we train the
model with a batch size of 4 for 15 epochs using a learning

rate of 0.002, and we decay the learning rate with a cosine
annealing [23]. We use a masking ratio of 0.7 in our main
experiments and a fixed predicted point cloud number of



Table 3. Performance on the test set OPV2V dataset.

Method Default Culver
AP0.5 AP0.7 AP0.5 AP0.7

No Fusion 71.3 60.4 64.6 51.7
Early Fusion 87.7 81.3 82.1 73.8
Late Fusion 84.6 77.5 80.8 68.2
AttFuse [41] 89.3 82.6 87.5 76.0
F-Cooper [4] 87.8 81.7 89.0 79.7
V2X-ViT [40] 89.8 83.7 88.7 80.2

CooPre (AttFuse) 91.7 +2.4 86.6 +4.0 88.7 +1.2 80.0 +4.0

CooPre (F-Cooper) 89.0 +1.2 83.4 +1.7 90.2 +1.2 82.0 +2.3

CooPre (V2X-ViT) 91.9 +2.1 86.5 +2.8 89.9 +1.2 82.4 +2.2

20. During the fine-tuning stage, the optimization process
is identical to the train-from-scratch baselines. We fine-
tune the model for 40 epochs in OPV2V dataset, 60 epochs
in V2V4Real dataset, and 20 epochs in V2X-Real dataset.
We also add normal point cloud data augmentations for all
finetuning experiments, including scaling, rotation, and flip
[14]. Note that both pretraining and finetuning stages are
conducted within the same dataset.
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Figure 4. Illustration of enhanced detection performance in
long-range and occlusion scenarios. Our multi-agent pretraining
framework yields more robust perception capabilities in scenarios
involving occlusions and long-range perception. Particularly, the
occurrence of false perceptions significantly decreases in far-range
scenarios where point cloud features are sparse. Blue and red 3D
bounding boxes correspond to the ground-truth and detection out-
puts, respectively. Orange boxes denote the zoomed-in view of
detection results.

Table 4. Results of cross-domain transferability of our method
(Metric: AP0.5 for Car Category) evaluated under the test set of
corresponding finetuning dataset (V2V4Real or V2X-Real V2V).

Pretrain
Finetune

V2V4Real V2X-Real V2V

No Pretrain 71.2 65.3
V2V4Real 74.3 +3.1 68.2 +2.9

V2X-Real V2V 72.2 +1.0 70.1 +4.8

Combined 74.5 +3.3 70.5 +5.2

Table 5. Comparison with prior works in different perception
ranges (Metric: mAP0.5).

Dataset Pretraining Method Overall 0-30m 30-50m 50-100m

V2X-Real VC No Pretrain 48.5 61.0 53.5 36.9
BEVContrast [28] 48.8 61.2 52.5 39.2
Random Masking 50.9 63.9 55.4 40.3

CORE [31] 51.6 64.7 55.4 40.7
STAR [17] 50.0 63.9 55.6 38.4

BEV-MAE [22] 51.1 64.5 55.7 39.4
Ours 52.2 64.9 55.9 42.1

V2X-Real V2V No Pretrain 48.6 64.2 52.3 36.0
BEVContrast [28] 46.3 63.1 54.1 32.9
Random Masking 50.9 65.5 54.7 40.4

CORE [31] 51.9 65.9 55.0 41.8
STAR [17] 51.2 66.0 54.4 40.6

BEV-MAE [22] 50.5 65.4 54.6 38.7
Ours 53.1 66.1 55.4 42.7

4.2. Main Results
In Table 1, we present the experimental results across all
collaboration modes in V2X-Real [37] dataset. In the VC
and V2V settings, CooPre substantially outperforms the
train-from-scratch baselines across all classification cate-
gories. Take AttFuse [41] as example, the improvements
are particularly notable in the Car and Truck categories,
with a 4.4 mAP0.5 increase in the Car category and a 6.3
mAP0.5 increase in the Truck category in the VC setting,
and a 4.8 mAP0.5 increase in the Car category and a 5.3
mAP0.5 increase in the Truck category in the V2V setting.
This aligns with our pretraining design, which enables the
model to learn more 3D geometrical and topological in-
formation beforehand, resulting in more accurate bounding
box detection results under higher thresholds. On the other
hand, our pretraining method shows an incremental effect
on detecting pedestrians. We attribute this to two factors: 1)
pedestrians are small-scale in nature and thus receive fewer
LiDAR features than larger objects, and 2) pedestrians are
non-rigid-body objects, making it more challenging for the
model to learn their 3D features compared to rigid-body
counterparts such as cars and trucks. On the infrastructure
side, our pretraining method shows improvements for the
Car and Truck categories, but we observe a subtle decrease
in the Pedestrian category. We attribute this to the small-
scale and non-rigid-body nature of pedestrians, which might



Figure 5. Data efficiency experiment. We evaluate the performance boost using CooPre under different ratios of finetuning data on
V2X-Real dataset with AttFuse [41] as backbone.

Figure 6. Comparison of CooPre across different cooperative
fusion strategies. We assess the performance enhancement pro-
vided by CooPre under various fusion strategies on the V2X-Real
VC and V2V datasets with AttFuse [41] as backbone.

Figure 7. Robustness assessment on localization errors and
time delay. Our method shows strong robustness against local-
ization errors and time delay compared to the train-from-scratch
baseline on V2V4Real dataset with AttFuse [41] as backbone.

be negatively affected by asynchronized results transmitted
from connected vehicles, such as pose and localization er-
rors [24, 33]. This asynchronization can alter the percep-
tion accuracy of static infrastructure observers. Such ob-
servation is also shown in the results of other cooperative
methods [4, 40].

We show the generalizability of our method in another
real-world dataset V2V4Real [42] and a simulation dataset
OPV2V [41], as shown in Table 2 and Table 3, respectively.
For the V2V4Real dataset, after we pretrain and finetune
the model, we test it under synchronized and asynchronized
modes for a fair comparison. The improvement is substan-

tial in both testing settings. For the OPV2V dataset, we
outperform the baseline by a large margin across all test
sets. These results demonstrate the generalizability of our
pretraining method across different domains with different
fusion methods.

4.3. Data Efficiency
In this section, we investigate the benefits of our pretrain-
ing method in scenarios with limited labeled data using At-
tFuse [41] as backbone. Specifically, we randomly sample
20%, 50%, and 80% of the training dataset and train the
models with these annotated subsets. For our method, we
pretrain the model on the entire training set and then fine-
tune it on each sampled subset. As shown in Fig. 5, our
method outperforms train-from-scratch baselines across all
settings. Notably, the performance gain of CooPre increases
as the percentage of data decreases. Additionally, CooPre
provides crucial guidance when collaboration involves dif-
ferent sensor configurations. For instance, in the V2X-
Real VC dataset, the baseline method struggles to learn a
good representation with limited annotations and the perfor-
mance drops dramatically due to data heterogeneity issues.
With our pretraining method, the model learns meaningful
prior knowledge of different sensor distributions, leading
to substantial improvements even when finetuning with less
labeled data. These findings demonstrate the effectiveness
of our method in data scarcity scenarios.

4.4. Cross-domain Transferability
We evaluate the cross-dataset transferability of our pre-
trained 3D encoder by finetuning it on another dataset us-
ing AttFuse [41] backbone. Since V2V4Real [42] does not
support multi-class classification, we only examine the per-
ception results on car category which is shared by both do-
mains. To isolate the effects of data heterogeneity, we inves-
tigate the performance across two real-world V2V datasets
(V2X-Real V2V and V2V4Real), which have similar sen-
sor configurations. As shown in Table 4, pretraining on a
different domain improves performance compared to the
train-from-scratch baseline. However, it performs worse



than pretraining on the source domain due to the domain
gap issue. We also conduct an experiment where we com-
bine the V2X-Real V2V and V2V4Real datasets to create a
large pretraining corpus. While this approach improves per-
formance over pretraining on the source domain, the gains
are less significant. This difference could be attributed to
the scenario differences between the V2X-Real V2V and
V2V4Real datasets. The former primarily focuses on in-
tersection scenarios, whereas the latter includes a broader
range of corridor scenarios in its training set.

4.5. Ablation Studies and Discussion
In this section, we conduct extensive experiments to explain
how, where, and why our pretraining framework benefits
current cooperative perception backbones.
Comparison with other pretraining methods. The com-
parison of pretraining methods is carried out in three as-
pects using AttFuse [41] as backbone. First, to evaluate re-
construction targets in a multi-agent pretraining setting, we
adapt the reconstruction loss function from [17, 31] to align
with our pretraining framework. Our approach demon-
strates superior performance. Second, to analyze the impact
of collaboration during pretraining, we compare our multi-
agent pretraining method with the ego-agent pretraining ap-
proach from [22, 28]. As shown in Table 5, multi-agent
pretraining results in further performance gains. Addition-
ally, both single-agent and multi-agent pretraining outper-
form the train-from-scratch approach. Lastly, we note vari-
ability in [28], a contrastive learning based single-agent
pretraining method, which may struggle to establish ro-
bust priors for multi-agent BEV representation compared
to reconstruction-based pretraining methods.
Extent of improvements in different perception ranges.
We also explore the enhancements across various percep-
tion ranges. As shown in Table 5 and Table 2, the most
substantial improvements are observed in middle and long
ranges compared to the baselines. Since our multi-agent
pretraining method enables a significantly larger perception
field and provides supervision signals for feature learning
on cooperative agents, it demonstrates greater robustness in
handling long-range perception and occlusions compared to
single-agent pretraining methods, as illustrated in Fig. 4.
Improvements with different cooperative fusion strate-
gies. While our primary focus is on the intermediate fusion
strategy, our method also applies to other fusion strategies,
as depicted in Fig. 6. We observe that our pretraining strat-
egy benefits other cooperative fusion strategies as well, with
the intermediate fusion strategy consistently demonstrating
the best performance.
Robustness assessment. Following [40], we evaluate our
method’s robustness towards localization error and time de-
lay compared to the baseline method on the V2V4Real
dataset, as illustrated in Fig. 7. Our method is less sen-

sitive to localization errors and shows its strong robustness
against time delay.
Masking Ratio. Table 6 demonstrates the effect of the
masking ratio within the range of 0.6 to 0.8. With a mask-
ing ratio of 0.7, the pretraining framework achieves the best
performance.
Effectiveness on different 3D encoders. Table 7 shows
our pretraining method consistently improves the accuracy
of different 3D encoders [14, 43].

Table 6. Ablation on masking ratio.

Dataset Method Mask Ratio mAP0.3 mAP0.5

V2X-Real VC AttFuse [41] 0.6/0.7/0.8 59.1/60.1/59.0 51.7/52.2/51.0

Table 7. Ablation on different 3D encoders in terms of
mAP0.3/0.5.

Dataset Method Second PointPillar
Original W/ CooPre Original W/ CooPre

V2X-Real VC AttFuse [41] 56.1/48.5 60.1/52.2 42.5/33.8 44.0/35.2

5. Conclusion

We introduce CooPre, a multi-agent pretraining framework
that prompts the representation to learn a holistic prior
knowledge of the 3D environment before performing the
perception task. The framework explores the intrinsic geo-
metrical and topological information of scenarios and sen-
sor distributions. Extensive experiments on representative
datasets demonstrate the efficacy of the method as it out-
performs the previous state-of-the-art methods in all V2X
settings. Furthermore, we demonstrate this framework’s
strong generalizability, cross-domain adaptability, and data
efficiency in cooperative perception.
Limitations and Future work. Despite its strengths,
CooPre has several limitations: (1) its reliance on raw point
clouds during pretraining incurs substantial computational
overhead, posing challenges for large-scale real-time appli-
cations; (2) the framework has not yet been benchmarked
with recent cooperative fusion strategies such as Pyramid
Fusion [25]; and (3) though well-suited for rigid-body
object detection, performance degrades on deformable and
small-scale targets like pedestrians. Futu will include:
(1) extending this self-supervised pretraining paradigm to
encompass cooperative prediction tasks; (2) developing
communication-efficient pretraining strategies to alleviate
the computational cost; and (3) integrating post-training
quantization techniques to build a unified pretrain/post-
train framework for efficient V2X cooperative perception.
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